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Abstract

This paper introduces an econometric framework for analyzing cross-sectional dependence
in the idiosyncratic volatilities of assets using high frequency data. We first consider the estima-
tion of standard measures of dependence in the idiosyncratic volatilities such as covariances and
correlations. Naive estimators of these measures are biased due to the use of the error-laden
estimates of idiosyncratic volatilities. We provide bias-corrected estimators and the relevant
asymptotic theory. Next, we introduce an idiosyncratic volatility factor model, in which we
decompose the variation in idiosyncratic volatilities into two parts: the variation related to the
systematic factors such as the market volatility, and the residual variation. Again, naive estima-
tors of the decomposition are biased, and we provide bias-corrected estimators. We also provide
the asymptotic theory that allows us to test whether the residual (non-systematic) components
of the idiosyncratic volatilities exhibit cross-sectional dependence. We apply our methodol-
ogy to the 30 Dow Jones Industrial Average components, and document strong cross-sectional
dependence in their idiosyncratic volatilities. We consider two different sets of idiosyncratic
volatility factors. We find that a single market volatility factor cannot fully account for the
cross-sectional dependence in idiosyncratic volatilities, while this conclusion is reversed with
additional industry volatility factors. For each model, we map out the network of dependencies

in residual (non-systematic) idiosyncratic volatilities across all stocks.
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1 Introduction

In a panel of assets, returns are generally cross-sectionally dependent. This dependence is usually
modelled using the exposure of assets to some common return factors, such as the Fama-French fac-
tors. In this Return Factor Model (R-FM), the total volatility of an asset return can be decomposed
into two parts: a component due to the exposure to the common return factors (the systematic
volatility), and a residual component termed the Idiosyncratic Volatility (IdioVol). These two
components of the volatility of returns are the most popular measures of the systematic risk and
idiosyncratic risk of an asset.

Idiosyncratic Volatility is important in economics and finance for several reasons. For example,
when arbitrageurs exploit the mispricing of an individual asset, they are exposed to the idiosyn-
cratic risk of the asset and not the systematic risk (see, e.g., Campbell, Lettau, Malkiel, and Xu
(2001)).! Also, Idiosyncratic Volatility measures the exposure to the idiosyncratic risk in imper-
fectly diversified portfolios. The attention to IdioVols in empirical finance literature is exemplified
by two IdioVol puzzles, started by Campbell, Lettau, Malkiel, and Xu (2001) and Ang, Hodrick,
Xing, and Zhang (2006), each associated with its own follow-up literature. A recent observation is
that the IdioVols seem to be strongly correlated in the cross-section of stocks, see, e.g., Connor, Ko-
rajezyk, and Linton (2006), Duarte, Kamara, Siegel, and Sun (2014), Herskovic, Kelly, Lustig, and
Nieuwerburgh (2016), and Christoffersen, Fournier, and Jacobs (2018). Herskovic, Kelly, Lustig,
and Nieuwerburgh (2016) argue this is due to a common IdioVol factor, which they relate to house-
hold risk. We note that the cross-sectional dependence in IdioVols is also important for option
pricing, see Gourier (2016).

This paper provides an econometric framework for studying the cross-sectional dependence in
the Idiosyncratic Volatilities using high frequency data. We show that naive estimators, such as
covariances and correlations of estimated IdioVols used by several empirical studies, are substan-
tially biased. The bias arises due to the use of error-laden estimates of IdioVols. We provide the
bias-corrected estimators.

To study Idiosyncratic Volatilities, we introduce the Idiosyncratic Volatility Factor Model
(IdioVol-FM). Just like a Return Factor Model, R-FM, such as the Fama-French model, decomposes

returns into common and idiosyncratic returns, the IdioVol-FM decomposes the IdioVols into sys-

LA stock is said to be mispriced with respect to a given model if the expected value of the return on the stock is
not consistent with the model.



tematic and residual (non-systematic) components. The IdioVol factors may or may not be related
to the return factors. The IdioVol factors can include the volatility of the return factors, or, more
generally, (possibly non-linear) transformations of the spot covariance matrices of any observable
variables, such as the average variance and average correlation factors of Chen and Petkova (2012).
We propose bias-corrected estimators of the components of the IdioVol-FM model.

We provide the asymptotic theory for this model. For example, it allows us to test whether
the residual (non-systematic) components of the IdioVols exhibit cross-sectional dependence. This
allows us to identify the network of dependencies in the residual IdioVols across stocks.

Our bias-corrected estimators and inference results are an application of a new asymptotic
theory that we develop for general estimators of quadratic covariation of vector-valued transforma-
tions of spot covariance matrices. This theoretical contribution is of its own interest. An example
of alternative applications is the study of cross-sectional dependence of asset betas. Two features
make the development of this asymptotic theory difficult. First, preliminary estimation of volatility
results in first-order biases even in the special case of quadratic variation of the volatility one stock
without any transformations, as in Vetter (2015). Second, we consider general nonlinear functionals
in multivariate settings, which substantially complicates the analysis.

Throughout the paper, we use factors that are specified by the researcher. An example of our
Return Factor Model is the so-called Fama-French factor model, which has three observable factors,
or the CAPM, which has one observable factor (the market portfolio return). An example of our
IdioVol factors is the market volatility, which can be estimated from the market index. Thus, our
setup is different from settings such as PCA where factors are identified from the cross-section of
the assets studied. The treatment of the latter case adds an additional layer of complexity to the
model and is beyond the scope of the current paper.

We apply our methodology to high-frequency data on the 30 Dow Jones Industrial Average
components. We study the IdioVols with respect to two models for asset returns: the CAPM and
the three-factor Fama-French model.? In both cases, the average pairwise correlation between the
IdioVols is high (0.55). We verify that this dependence cannot be explained by the missing return
factors. This confirms the recent findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016)
who use low frequency (daily and monthly) return data. We then consider the IdioVol-FM. We
use two sets of IdioVol factors: the market volatility alone and the market volatility together with

volatilities of nine industry ETFs. With the market volatility as the only IdioVol factor, the average

2The high frequency Fama-French factors are provided by Ait-Sahalia, Kalnina, and Xiu (2020).



pairwise correlation between residual (non-systematic) IdioVols is substantially lower (0.25) than
between the total IdioVols. We find that a single market volatility factor is not able to fully explain
the cross-sectional dependence in IdioVols, while this conclusion is reversed for the richer IdioVol-
FM with industry volatility factors. For each model, we map out the network of dependencies in
residual IdioVols across all stocks.

This paper analyzes cross-sectional dependence in Idiosyncratic Volatilities. This should not
be confused with the analysis of cross-sectional dependence in total and idiosyncratic returns. A
growing number of papers study the latter question using high frequency data. These date back
to the analysis of realized covariances and their transformations, see, e.g., Barndorff-Nielsen and
Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu (2006). A continuous-time factor
model for asset returns with observable return factors was first studied in Mykland and Zhang
(2006). Various return factor models with observable factors have been studied by, among others,
Bollerslev and Todorov (2010), Fan, Furger, and Xiu (2016), Li, Todorov, and Tauchen (2017a,b),
and Ait-Sahalia, Kalnina, and Xiu (2020). Emerging literature also studies the cross-sectional
dependence in returns using high-frequency data and latent return factors, see Ait-Sahalia and Xiu
(2019, 2017) and Pelger (2019, 2020). Importantly, the models in the above papers are silent on
the cross-sectional dependence structure in the IdioVols.

The Realized Beta GARCH model of Hansen, Lunde, and Voev (2014) imposes a structure on
the cross-sectional dependence in IdioVols. This structure is tightly linked with the Return Factor
Model parameters, whereas our stochastic volatility framework allows separate specification of the
return factors and the IdioVol factors.?

Our inference theory is related to several results in the existing literature. First, as mentioned
above, we generalize the result of Vetter (2015). Jacod and Rosenbaum (2013, 2015), Li, Todorov,
and Tauchen (2016) and Li, Liu, and Xiu (2019) estimate integrated functionals of volatilities, which
includes Idiosyncratic Volatilities. The latter problem is simpler than the problem of the current
paper in the sense that \/n-consistent estimation is possible, and the estimators are consistent
without a bias correction (see Section 3.1 for details). In the literature on the estimation of the
leverage effect, preliminary estimation of volatility also creates a bias, which also needs to be
corrected to achieve consistency, see Ait-Sahalia, Fan, and Li (2013), Ait-Sahalia, Fan, Laeven,

Wang, and Yang (2017), Kalnina and Xiu (2017) and Wang and Mykland (2014). The biases due

3In the Beta GARCH model, the IdioVol of a stock is a product of its own (total) volatility, and one minus the
square of the correlation between the stock return and the market return.



to preliminary estimation of volatility can be made theoretically negligible when an additional,
long-span, asymptotic approximation is used. This requires the assumption that the frequency of
observations is high enough compared to the time span, see, e.g., Corradi and Distaso (2006), Bandi
and Reno (2012), Li and Patton (2018), and Kanaya and Kristensen (2016).

In the empirical section, we define a network of dependencies using (functions of) quadratic
covariations of IdioVols. This approach can be compared with the network connectedness measures
of Diebold and Yilmaz (2014). The latter measures are based on forecast error variance decom-
positions from vector autoregressions. They capture co-movements in forecast errors. In contrast,
we assume a general semimartingale setting, and our framework captures realized co-movements in
Idiosyncratic Volatilities, while accounting for the measurement errors in these volatilities.

The remainder of the paper is organized as follows. Section 2 introduces the model and the
quantities of interest. Section 3 describes the identification and estimation. Section 4 presents the
asymptotic properties of our estimators. Section 5 uses high-frequency stock return data to study
the cross-sectional dependence in IdioVols using our framework. Section 6 contains Monte Carlo

simulations. The Appendix contains all proofs and additional figures.

2 Model and Quantities of Interest

We first describe a general Factor Model for the Returns (R-FM), which allows us to define the
Idiosyncratic Volatility. We then introduce the Idiosyncratic Volatility Factor Model (IdioVol-FM).
In this framework, we proceed to define the cross-sectional measures of dependence between the
total IdioVols, as well as the residual IdioVols, which take into account the dependence induced by
the IdioVol factors.

Suppose we have (log) prices on dg assets such as stocks, S; = (Sl,t,...,SdSJ)T, and on
dr observable factors, F; = (Fig,... ,FdF’t)T. We stack them into the d-dimensional process
Y = (St Sagts Figs - - ,FdF’t)T where d = dg + dp. The observable factors Fi,...Fy, are

used in the R-FM model below. We assume that all observable variables jointly follow an Ito

semimartingale, i.e., Y; follows

t t
Y, = Y0+/ bsds+/ osdWs + Ji, (1)
0 0

where W is a d"-dimensional Brownian motion (dW >d), Cy = atatT is the spot covariance process,



and J; denotes a finite variation jump process. The spot covariance matrix process Cy of Y; is a

continuous Ité6 semimartingale,*

t t
Cy = Co+ / beds + / Gy dWs. 2)
0 0

We refer to the (Cy), , element of the matrix Cy as Cop . For convenience, we also use the alternative
notation Cyv, to refer to the spot covariance between two elements U and V' of Y, and Cp; to
refer to Cyy,.

We assume a standard continuous-time factor model for the asset returns.

Definition (Factor Model for Returns, R-FM). For all 0 <t <T and j =1,...,dg,’

dSjy = B} dFf + B} dFf + dZ;,  with .
[Z;, Fls = 0.

In the above, dZ;; is the idiosyncratic return of stock j. The superscripts ¢ and d indicate the
continuous and jump part of the processes, so that 3;; and 5]'7,5 are the continuous and jump factor
loadings. For example, the k-th component of ;; corresponds to the time-varying loading of the
continuous part of the return on stock j to the continuous part of the return on the k-th factor.
We set ;. = (Bi, - -- ,Bds’t)T and Zy = (Z14, ..., st,t)—r.

We do not need the return factors F; to be the same across assets to identify the model, but
without loss of generality, we keep this structure as it is standard in empirical finance. These
return factors are assumed to be observable, which is also standard. For example, in the empirical
application, we use two sets of return factors: the market portfolio and the three Fama-French
factors, which are constructed in Ait-Sahalia, Kalnina, and Xiu (2020).

A continuous-time factor model for returns with observable factors was originally studied in
Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. A burgeoning

literature uses related models to study the cross-sectional dependence of total and/or idiosyncratic

“Note that assuming that Y and C are driven by the same d"-dimensional Brownian motion W is without loss
of generality provided that d" is large enough, see, e.g., equation (8.12) of Ait-Sahalia and Jacod (2014).
5The quadratic covariation of two vector-valued It6 semimartingales X and Y, over the time span [0, 77, is defined

as
M-—-1

[Xa Y}T = p—lim Z (th+1 - th)(}/;f”l - Y;s)T:

M —o0 5—0
for any sequence tg < t1 < ... <ty =T with sup {ts41—ts} — 0 as M — oo, where p-lim stands for the probability

limit.



returns. However, this literature does not consider the cross-sectional dependence in the IdioVols.
We define the idiosyncratic Volatility (IdioVol) to be the spot volatility of Z;; and denote it
by Cz;:. Notice that R-FM in (3) implies that the factor loadings f; as well as the IdioVols are

functions of the total spot covariance matrix C. In particular, the vector of factor loadings satisfies

Bjt = (CF,t)ilcFSj,tv (4)

for j =1,...,dgs, where Cr; denotes the spot covariance matrix of the factors F', which is the lower
dr x dp sub-matrix of Cy; and Crg;; denotes the covariance of the factors and the jth stock, which
is a vector consisting of the last d elements of the j** column of C;. The IdioVol of stock j is then

also a function of the total spot covariance matrix Cf,

Czjt = Cyjit —  (Crsjp) " (Cra) ' Crsjt- (5)
—— ——

IdioVol of stock j total volatility of stock j

By the It6 lemma, (4) and (5) imply that factor loadings and IdioVols are also It6 semimartingales
with characteristics that are functions of Cy.

We now introduce the Idiosyncratic Volatility Factor model (IdioVol-FM). In IdioVol-FM, the
cross-sectional dependence in the IdioVol shocks can be potentially explained by certain IdioVol
factors. We assume the IdioVol factors are given smooth functions of the matrix C;. In the empirical
application, we use the market volatility as the IdioVol factor, which has been used in Herskovic,

Kelly, Lustig, and Nieuwerburgh (2016) and Gourier (2016); we discuss other possibilities below.

Definition (Idiosyncratic Volatility Factor Model, IdioVol-FM). For all 0 <t < T and

Jj=1,...,dg, the Idiosyncratic Volatility Cz; follows,

dCzjt = 7—erdHt + dC%Eﬁd with (6)

[Cyrd 0, =0,
where Iy = (Tlyy, . .., Hgy¢) is a R¥-valued vector of IdioVol factors, which satisfy
I = I(C) (7)

with the function I () being three times continuously differentiable for k =1,..., dy.

We call the residual term C’gej‘ffd the residual IdioVol of asset j. Our assumptions imply that

7



the components of the IdioVol-FM, C7z; 4, II; and C’Z-ffd, are continuous It6 semimartingales. We
remark that both the dependent variable and the regressors in our IdioVol-FM are not directly
observable and have to be estimated, and our asymptotic theory takes that into account. As will
see in Section 3, this preliminary estimation implies that the naive estimators of all the dependence
measures defined below are biased. One of the contributions of this paper is to quantify this bias
and provide the bias-corrected estimators for all the quantities of interest.

The class of IdioVol factors permitted by our theory is rather wide as it includes general non-
linear transforms of the spot covariance matrix process C;. For example, IdioVol factors can be
linear combinations of the total volatilities of stocks, see, e.g., the average variance factor of Chen
and Petkova (2012). Other examples of IdioVol factors are linear combinations of the IdioVols, such
as the equally-weighted average of the IdioVols, which Herskovic, Kelly, Lustig, and Nieuwerburgh
(2016) denote by the “CIV”. The IdioVol factors can also be the volatilities of any other observable
processes.

Having specified our econometric framework, we now provide the definitions of some natural
measures of dependence for (residual) IdioVols. Their estimation is discussed in Section 3.

Before considering the effect of IdioVol factors by using the IdioVol-FM decomposition, one
may be interested in quantifying the dependence between the IdioVols of two stocks j and s.
A natural measure of dependence is the quadratic-covariation based correlation between the two

IdioVol processes over a given time period [0, T,

[Cz;,CzslT

C Czj,Czs) = ’
OT"I"( Zj Z) \/[Cijch]T\/[CZS,CZS]T

(8)

Alternatively, one may consider the quadratic covariation [Cz;, Czs]r without any normalization.
In Section 4.4, we use the estimator of the latter quantity to test for the presence of cross-sectional
dependence in IdioVols.

To measure the residual cross-sectional dependence between the IdioVols of two stocks after
accounting for the effect of the IdioVol factors, we use again the quadratic-covariation based corre-

lation,
resid resid
[CZj ’ CZS }T

resid resid resid resid )
\/[CZ] ’CZj ]T\/[CZS ’CZs ]T

9)

Corr (C}“}Sld, geé,s“l) —

In Section 4.4, we use the quadratic covariation between the two residual IdioVol processes



[Cg?sjd, C1£5] 1 without normalization for testing purposes.
We want to capture how well the IdioVol factors explain the time variation of IdioVols of the
jt" asset. For this purpose, we use the quadratic-covariation based analog of the coefficient of

determination. For j =1,...,dg,

R ldioVol-FM _ 725 W1z (10)
Zj [Czj, Czjlr

It is interesting to compare the correlation measure between IdioVols in equation (8) with the

correlation between the residual parts of IdioVols in (9). We consider their difference,
Corr (Czj,Czs) — Corr (C, €3 (11)

to see how much of the dependence between IdioVols can be attributed to the IdioVol factors.
In practice, if we compare assets that are known to have positive covolatilities (typically, stocks
have that property), another useful measure of the common part in the overall covariation between

IdioVols is the following quantity,

.
miovoLp _ V21 Wz

; = 12
QZ]7Z3 [CZj7 CZS]T ( )

This measure is bounded by 1 if the covariations between residual IdioVols are nonnegative and
smaller than the covariations between IdioVols, which is what we find for every pair in our empirical
application with high-frequency observations on stock returns.

We remark that our framework can be compared with the following null hypothesis studied in
Li, Todorov, and Tauchen (2016), Hy : Cz;; = azj + 'ygjﬂt, 0 <t < T. This Hy implies that
the IdioVol is a deterministic function of the factors, which does not allow for an error term. In

particular, this null hypothesis implies R%dio Vol-FM _ q

3 Estimation

As we show below, the quantities of interest in Section 2 can be expressed in terms of quadratic

covariation between two functions of the spot covariance matrix Ct,

[H(C),G(O)p - (13)



Section 3.1 proposes estimators of this general functional, and Section 3.2 explains how to use these

formulas to obtain estimators of the quantities of interest in Section 2.

3.1 Estimation of a General Functional

This section proposes estimators of the quadratic covariation between two functions of the spot
covariance matrix [H(C),G(C)]r, where H and G are given real-valued smooth functions. Recall
that Cy is the spot covariance matrix of the observable variables, see equations (1)-(2).

Suppose we have discrete observations on Y; over an interval [0,7]. Denote by A,, the distance
between observations. It is well known that we can estimate the spot covariance matrix Cy at time

(i —1)A,, with a local truncated realized volatility estimator,

kn—1

~ 1 < n n

Cin, = X D (ALY ALY Tar, vi<vag)s (14)
n n m=0

where ATY = Y;a, — Y(;_1)a, and where kj, is the number of observations in a local window.b We
refer to the <@A">a,b element of the matrix éiAn as éab,mn.

If C;a, was observed, [H(C),G(C)]r could be estimated by the realized covariance between
G(Cia,) and H(Cja,, ), which is the sample analog of the definition of [H(C), G(C)]r. However,

we do not observe Cja, . If we replace it with @An in (14), we obtain the plug-in estimator

— Naive 1 [T/ An)=2kn+1 ~ ~ ~ ~
HC),GOlr =— Y ((H(kanmn) — H(Cia,)) (G(Clisrnian) - G(%))) .
" i=1

(15)
However, it turns out that due to the measurement errors in @-An, this estimator is inconsistent.
We propose two estimators for the general quantity [H(C), G(C)]r. The first is a bias-corrected

sample analog of the definition of quadratic covariation between two It6 processes,

——— AN 3 [T/An]—2kn+1 R R R R
HO.GOr =3 > | (HCiknan) = H(Cis,)) (GCisra,) = G(Cin,))
" i=1
2 d ~ ~ ~ ~ ~
- Z (athaabG)(CiAn)(Cga,iAanb,iAn + Cgb,mncha,mn>>- (16)
n g,h,a,b=1

5Tt is also possible to define more flexible kernel-based estimators as in Kristensen (2010).

10



Our second estimator is based on the following equality, which follows by the It6 lemma,

(H(C), G(C)]r Z / (0,0 HOwG) (CHT " dt, (17)
g,h,a,b=1

where éfh’ab denotes the covariation between the volatility processes Cyp, s and Cyp¢. The quantity
is thus a non-linear functional of the spot covariance and spot volatility of volatility matrices. Our

second estimator is a bias-corrected version of the sample counterpart of the “linearized” expression

n (17),

- 4 [T/An]—2kn+1
HO)L.GON =2 3 (Ogn HOwnG)(Cia, )
" g.h,a,b=1 i=1 (18)
- . 2
((Cgh,(i+kn) — Cyninng )(Cab,(z-i-kn)An — Capin,) — ?(Cga ianChbinn, + Copin, Chain, ))

We now provide the intuition for the bias terms. If we had observations on C;a,,, the estimators

of [H(C),G(C)]r would not need any bias-correction terms. It is useful to think of Cja, as an

estimator of integrated volatility matrix, @'An = knlAn fi(Aitk")A” Csds + U;p,,, where U;a,, is the

estimation error. The first part of the bias-correction in (16) and (18) is an additive term

[T/AR)—2kn+1 d
—— Z < Z (8th8abG)(6'iAn)<6ga,iAnahb,iAn + égb,iAnéha,iAn>>~ (19)
n i=1 g,h,a,b=1

This term arises because of the estimation error U;a,. Intuitively, estimation of, e.g., variance
of functionals of C;a, by variance of functionals of @An overestimates it due to the additional
variability of U;a,,. In particular, one can show that the additive bias-correction term in (19) is, up
to a scale factor, an estimator of the asymptotic covariance between the estimators of fo (Cy)dt
and fo (Cy)dt.

The second part of the bias-correction in (16) and (18) is the multiplicative correction factor 3/2.
This correction factor is needed because of a smoothing bias that arises due to the replacement
of Cia, by A f (iHkn) An Csds. To gain some intuition, consider the special case of d = 1 and
H(-) = G(-) = - . Suppose we had observations on Ai" fi(itk”m” Csds. The i summand in the

naive estimator of [C, C]; would be

(i+2kn) A (i+kn)An 2 (i+kn) A 2
/ Cyds — / Cods | = / (Csta,k, —Cs)ds | (20)
(itkn)An iAn iAn

11



divided by A2k3. Consider the weights that the integral f (i+kn)An (Cs+n,k, —Cs)ds
puts on A,-increments of the volatility Ci: these Welghts are triangular, i.e.,
(Apkn — |Apky, + 1A, — s|) I {s € [iA,, (i + 2k,) Ay} One can show that the squared
integral in (20) is proportional to the integral of the squared triangular weights,
(Anin)g Z.(AQIZ"H)A" (Ankn — |Anky + 1A, — s|)2 ds.  The latter integral equals %, hence the

estimator needs a multiplicative correction factor %

It is useful to describe how our asymptotic theory is related to the earlier work of Jacod and
Rosenbaum (2013) and Jacod and Rosenbaum (2015), JR13 and JR15 henceforth. The parameter
of interest in those two papers is the integrated functional of volatility fo (Cy)dt, which is different
from the quadratic covariation [H(C'), G(C)];. The estimation of integrated functionals of volatility
is simpler in a number of ways. First, the naive plug-in estimators of fo (Cy)dt are consistent, and
a bias-correction is only needed to derive the asymptotic distribution. In contrast, the naive plug-
in estimators of [H(C), G(C)], are inconsistent without a bias-correction. Second, the estimators
of fo )dt have a rate of convergence n/2, while our estimators have a rate of convergence
n'/%. Third, our analysis requires a proof strategy that is different from JR13&15. To obtain the
asymptotic distribution of the estimators of fo (Cy)dt, JR13&15 approximate volatility to be
piecewise constant. This approximation does not work in our case, which substantially complicates
the proof. We also remark on another connection with JR15. One of the higher-order bias terms
in JR15 is of the form [H(C), H(C)];. In the special case H(-) = G(-), aside from a scale factor
and the end-effects, our LIN estimator in equation (18) coincides with their estimator. Note that
JR15 only establish consistency of their estimator, which is all they need to implement their bias
correction. In contrast, our analysis considers estimators of a general quadratic covariation, derives
their asymptotic distributions, and proposes consistent estimators of the asymptotic variances.

Our two estimators, AN in equation (16) and LIN in (18), are identical when H and G are linear,
for example, when estimating the covariation between two volatility processes. In the univariate
case d = 1, when H(-) = G(-) = -, our estimator coincides with the volatility of volatility estimator
of Vetter (2015). Our contribution is the development of the asymptotic theory for general nonlinear
functionals and allowing d > 1.

How do the two estimators, AN and LIN, compare (when they are not identical)? In the next
section, we show that they have the same asymptotic distribution. In our Monte Carlo experiments

in Section 6, LIN estimator somewhat outperforms AN estimator. We leave the theoretical analysis

12



of asymptotic higher-order properties of these estimators to future research.

3.2 Estimation in R-FM and IdioVol-FM models

In this section, we explain how to use formulas in equations (16) and (18) to obtain estimators for

the objects of interest in Section 2, see equations (6)—(12). In particular, each of these objects of

interest,
[Czj, Czslr, Corr(Czj,Czs), vz, [CFF CH ), o)
Corr (Cgfzsid, Cg;sid) 7 gd]ji’oz\‘/;ol—FM’ and R%jdioVol—FM,
for j,s =1,...,dg, can be written as
@ ([H1(C),G1 (O], -, [Hi(C), Gu(O)l7) (22)
for some smooth, real-valued functions ¢, H,, G,, r = 1,...,k. Each element in (22) is of the

form [H,(C), G, (C)]r, i.e., it is a quadratic covariation between functions of Cy, and hence can be
estimated using the estimators proposed in Section 3.1.

We start by discussing the first quantity in (21), which is the quadratic covariation between ;5%
and s IdioVol, [Cz;, Czs|r. It can be written as [H(C), G(C)|r if we choose H(Cy) = Cz;+ and
G(Cy) = Czs 4. By equation (5), both Cz;; and Cyzs, are functions of C;.

Next, consider Corr (Czj,Cz,) defined in equation (8). Correlation is a function of three
quadratic covariations, each of which can be represented in the form [H,(C), G,(C)]r. Therefore,
Corr (Cgzj,Cys) is of the form of equation (22).

Note that IdioVol-FM implies

vzj = ([L,T)p)"' [IT,Czlr, and (23)
[C57, C e = [Czj, Czslr — 77,10, Mlryzs (24)
for j,s =1,...,dg. Recall that Cz;;, Czs; and every element of 1I; are given real-valued functions

of C¢. Thus, the right-hand-sides of (23) and (24) have the form of equation (22), for a finite
number of quantities of the form [H,(C), G,(C)]r.
Finally, Corr (C35id, Cit), QP and REJ™VH™M are smooth functions  of

[Cyesid, Coesid)y, [Cgy, Crjlr, vzj, and [IL Iz, each of which is of the form of equation (22),
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and hence are themselves of the form of equation (22).

4 Asymptotic Properties

In this section, we first present the full list of assumptions for our asymptotic results. We then obtain
the joint asymptotic distribution between the general functionals [H,(C),G,(C)|p for r=1,...,k
introduced in Section 3.1. We also develop estimators for the asymptotic variance-covariance ma-
trix. The asymptotic distributions of the estimators of Corr (Cz;,Cz;) and other quantities of
interest in Section 2 follow by the Delta method (see Section 3.2 for details). Finally, to illustrate
the application of the general theory, we describe three statistical tests about the IdioVols, which

we later implement in the empirical and Monte Carlo analysis.

4.1 Assumptions

Recall that the d-dimensional process Y; represents the (log) prices of stocks, S;, and factors Fy.

Assumption 1. Suppose Y is an Ité semimartingale on a filtered space (0, F, (Ft)t>0,P),

t t t
Y; =Y, +/ bsds +/ osdW +/ / d(s, z)u(ds, dz), (25)
0 0 0 JE

where W is a d"V -dimensional Brownian motion (d" > d) and p is a Poisson random measure on
R4 x E, with E an auziliary Polish space with intensity measure v(dt,dz) = dt @ X\(dz) for some o-
finite measure \ on E. The process by is R%-valued optional, oy is R xR -valued, and 6 = §(w,t, z)
is a predictable R? -valued function on Q x Ry x E. Moreover, ||6(w,t A Tm(w), 2)|| A1 < T(2),
for all (w,t,z), where (1p,) is a localizing sequence of stopping times and, for some r € [0,1/2), the
function Ty, on E satisfies [ T'm(2)"A(dz) < oo. The spot volatility matriz of Y is then defined as

Cy = oyo] . We assume that Cy is a continuous Ité semimartingale,”
t t
Cy = Co +/ bsds +/ osdWs. (26)
0 0

where b is R? x Re-valued optional. Cy takes values in the space My consisting of d X d positive
definite matrices. For a sequence of convex compact subsets (Kp)m>1 of Mg, Cy € Ky, for all

t<Tm,.

"Note that &, = (32™) is (d x d x d")-dimensional and G.dW; is (d x d)-dimensional with (F.dW;)" =
dW

~gh,m m
Doy LT AW
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With the above notation, the elements of the spot volatility of volatility matrix and spot co-

variation of the continuous martingale parts of X and ¢ are defined as follows,

av av

—gh,ab ~gh,m~abm =/9,ab gm~ab,m

Ciy = E ol oy, CF = E ol o, (27)
m=1 m=1

We assume the following for the process oy:

Assumption 2. g; is a continuous Ité semimartingale with its characteristics satisfying the same

requirements as that of Cy.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in
economics and finance. It allows for potential stochastic volatility and jumps in returns. Assump-
tion 2 is required to obtain the asymptotic distribution of estimators of the quadratic covariation
between functionals of the spot covariance matrix C;. It is not needed to prove consistency. This

assumption also appears in Wang and Mykland (2014), Vetter (2015), and Kalnina and Xiu (2017).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (21) are functions of multiple objects of
the form [H(C),G(C)]r. Therefore, if we can obtain a multivariate asymptotic distribution for a
vector with elements of the form [H(C), G(C)|r, the asymptotic distributions for all our estimators
follow by the Delta method. The current section presents this asymptotic distribution.

Let H1,G4, ..., Hs, G be given smooth real-valued functions. We are interested in the asymp-

totic behavior of vectors

— AN — ANN T
(1), GA (N - [H(C), Gu(C)]y ) and

— LIN — LINN T (28)
(L (C), GOy -, [Ha(C), CGu(O )

The following theorem summarizes the joint asymptotic behavior of the estimators.

—_— —_ AN —_ LIN
Theorem 1. Let [H,(C),G,(C)], denote either [H,(C),G,(C)|lp or [H,(C),G.(C)]l;  defined
in equations (16) and (18), where H, and G, are three times differentiable real-valued functions,

forr=1,..., k. Suppose Assumptions 1 and 2 hold. Fix k, = 9A;1/2 for some 0 € (0,00) and set
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3/42—1) <w < 5. Then, as A, — 0,

[H1(C), G1(O))y — [Hi(C), G1(C)]r

L-s

A4 =% MN(0,%7), (29)

[Hﬂ(c)v GH(C)]T - [Hn(c)a GH(C)]T

Let X" be the (Y1), , element of the k X k matriz Xp. We have

ETTSZETS()+E ()+2;5:(3)7
) 6 d d T
A DS /0 (O Hy G 1. H.01,0 Gl C1) [ Culgh ) Cu(ab, m)

gzh7avb:1 jvk’lvm:]-

+ Cy(ab, jk)Cy(gh, lm)} dt,

d

r 151 ab,lm
s7® %09 3 Z / g Hy Doy Gy 031 H oD G5 (C1) [Cgh”’“o -
g,h,a,b=1 j,k,l,m=1

+ e a,
d
3 —ab,lm
Vew X > [ @060 000 [Colan 00
a,b=1 j,k,l,m=1

+ Cy(ab, lm)C?™7*

+ Cy(gh, 1m)T* 1 Oy (ab, jk:)@fh’lm} dt,
with
Ci(gh, jk) = Cy; iChit + CgitChijs-

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and
Eagleson (1978) and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of
the estimators depends on the paths of the spot covariance and the volatility of volatility process.
The rate of convergence A, 1/4 has been shown to be the optimal for volatility of volatility estimation
(under the assumption of no volatility jumps).

The asymptotic variance of the estimators depends on the tuning parameter # whose choice
may be crucial for the reliability of the inference. We document the sensitivity of the inference

theory to the choice of the parameter § in a Monte Carlo experiment (see Section 6).
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4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element X7° of the asymptotic covariance matrix in

Theorem 1, we introduce the following quantities:

R d d [T/AR]—4kn+1 R
apW=a, S 3 > (OgnHr0uGrdikHeOmGs(Cia,,))
g,h,a,b=1 j,k,l,m=1 =1

X [@-An (gh, jk)C;a. (ab, Im) + Cia. (ab, jk)Cin. (gh, lm)} ,
d [T/A } —4kn+1

~ In,ghyn,jkyn,ab n,m
3 (athraabGTaijSalmGS(Cmn))[ ApghRmikynab Snim
g,h,a,b= 1]k,l,m 1 =1
In,abyn,lmyn,gh n,jk 1An,ab n,jkyn,gh In,lm I~ In,ghyn,Imiyn,ab In,jk
+ )‘ A Aok Aok, T 5T AT Ao, Aidak, AT AT Aok, Aifok, |
d [T/AR]—4kn+1

Qr,s, Z Z Z (athraabGraijsalmGs(aiAn))

g,h a,b=1j,k,l,m=1
[Cmn (gh, JR)NN™ 4 Cin, (ab, tm) AR
+ o (gh, IR 4 (s (ab RN T

with A" = am.ji — C"* and Cia,, (gh, jk) = (Cgjin, Chiin, + Coin, Chiin,,)-
The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold. Then, as A, — 0,

6 ~ ATS, P r,s,(1

S 2, e, (50)
239 Qe — gﬁgs’(”] Lo 2@ and (31)
1516 9 AT,S 4/\7”5 T,

— 0 + 5 2o - SO By oo, (32)

The estimated matrix f]T is symmetric but is not guaranteed to be positive semi-definite. By
Theorem 1, f]T is positive semi-definite in large samples. An interesting question is the estimation
of the asymptotic variance using subsampling or bootstrap methods, and we leave it for future
research.

Remark 1: The rate of convergence in equation (30) can be shown to be A, 1/2

/4

, and the rate
of convergence in (31) and (32) can be shown to be A,
Remark 2: In the one-dimensional case (d = 1), much simpler estimators of Z;S’@) can be

. i In,jkyn,Imyn,gh yn,xy In,gkyn,Imyn,ghyn,xzy .
constructed using the quantities A" AN AT or ASTEASTEASTINT as in Vetter (2015).
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However, in the multidimensional case, the latter quantities do not identify separately the quantity

—iklm—=-gh,zy Jjkm—=gh,xy = Fjk.gh~Imxxy = =jkzy=ghlm
Cy C Ct + C4 Cy + CY Cy

since the combination C shows up in a

non-trivial way in the limit of the estimator.

Corollary 3. Let [H,(C),G,(C)]; denote either [H,.(C),Gr(C)]y or [H(C),Gr(C)]p  defined
in equations (16) and (18). Suppose the assumptions of Theorem 1 hold. Then, as A, — 0,

o —

[H1(C), G1(O)] — [H1(C), G1(O)]r
ASVA S : L5 N0, 1,). (33)
[Hn(c)a GK(C)]T - [Hn(c)v GH(C)]T

In the above, we use L to denote the convergence in distribution and I,; the identity matrix
of order k. Corollary 3 states the standardized asymptotic distribution, which follows directly
from the properties of the stable-in-law convergence. Similarly, by the Delta method, standardized
asymptotic distribution can also be derived for the estimators of the quantities in (21). These
standardized distributions allow the construction of confidence intervals for all the latent quantities

of the form [H,(C), G,(C)|r and, more generally, functions of these quantities.

4.4 Tests

As an illustration of application of the general theory, we provide three tests about the dependence of
Idiosyncratic Volatility. Our framework allows to test general hypotheses about the joint dynamics
of any subset of the available stocks. The three examples below are stated for one pair of stocks,
and correspond to the tests we implement in the empirical and Monte Carlo studies.

First, one can test for the absence of dependence between the IdioVols of the returns on assets

j and s,
H} 2 [Czj,Czslr =0 vs Hi : [Czj,Czslr #0. (34)

The null hypothesis H& is rejected whenever the t-test exceeds the «/2-quantile of the standard
normal distribution, Z,,
‘[CZja CZs]T‘

A_1/4

n

> Zo)2- (35)

\//WH%(CZJ-, CZS)
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Second, we can test for all the IdioVol factors II being irrelevant to explain the dynamics of IdioVol

shocks of stock j,
HE : [Cz;, MM =0 vs HE: [Cgzj, Olr # 0. (36)

Under this null hypothesis, the vector of IdioVol factor loadings equals zero, vz, = 0. The null

hypothesis Hg is rejected when

e NT -1 _—
AT (675, M)y) (AVAR(C25,M))  [Crgo Ty > X2 1 (37)
where dpp denotes the number of IdioVol factors, and where Xgmk o is the (1 — «) quantile of the

qu distribution. One can of course also construct a t-test for irrelevance of any one particular

IdioVol factor. The final example is a test for absence of dependence between the residual IdioVols,
HY - [C7, Cyd M = 0 vs HY : [CF5, Cr # 0. (38)

The null can be rejected when the following t-test exceeds the critical value,

o —

’ [Cg}sid’ CEZSid]T ‘

A_1/4

n

> Z, /2 (39)
\/ AVAR(Cgid, Cypeid)

Each of the above estimators

—

3 Cs (Cg Wl and (€7, i),

can be obtained by choosing appropriate pair(s) of transformations H and G in the general estimator

[H (@ (C)], see Section 3 for details. Any of the two types of the latter estimator can be used,

— AN — LIN

[H(C),G(C)]ly  or [H(C),G(O)lp
For the first two tests, the expression for the true asymptotic variance, AVAR, is obtained using
Theorem 1 and its estimation follows from Theorem 2. The asymptotic variance in the third test is
obtained by applying the Delta method to the joint convergence result in Theorem 1. The expression

for the estimator of the asymptotic variance, m, follows from Theorem 2. Under R-FM and

the assumptions of Theorem 1, Corollary 3 implies that the asymptotic size of the two types of
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tests for the null hypotheses H& and Hg is a, and their power approaches 1. The same properties
apply for the tests of the null hypotheses H with our R-FM and IdioVol-FM representations.
Theoretically, it is possible to test for absence of dependence in the IdioVols at each point
in time. In this case the null hypothesis is H&’ 1 [Cz5,Czs]¢ = 0 forall 0 <t < T, which is,
in theory, stronger than our H{'. In particular, Theorem 1 can be used to set up Kolmogorov-

Smirnov type of tests for H(’)l

in the same spirit as Vetter (2015). However, we do not pursue this
direction in the current paper for two reasons. First, the testing procedure would be more involved.
Second, empirical evidence suggests nonnegative dependence between IdioVols, which means that
in practice, it is not too restrictive to assume [Czj,C’Zs]t > 0 Vt, under which H& and H&’ are

equivalent.

5 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IdioVols using high frequency
data. One of our main findings is that stocks’ IdioVols co-move strongly with the market volatility.
This is a quite surprising finding. It is of course well known that the total volatility of stocks moves
with the market volatility. However, we stress that we find that the strong effect is still present
when considering the IdioVols.

We use full record transaction prices from NYSE TAQ database for 30 constituents of the
DJIA index over the time period 2003-2012, see Table 1. After removing the non-trading days, our
sample contains 2517 days. The selected stocks were the constituents of the DJIA index in 2007.
We also use the high-frequency data on nine industry Exchange-Traded Funds, ETFs (Consumer
Discretionary, Consumer Staples, Energy, Financial, Health Care, Industrial, Materials, Technology,
and Utilities), and the high-frequency size and value Fama-French factors, see Ait-Sahalia, Kalnina,
and Xiu (2020). For each day, we consider data from the regular exchange opening hours from time
stamped between 9:30 a.m. until 4 p.m. We clean the data following the procedure suggested by
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), remove the overnight returns and then
sample at 5 minutes. This sparse sampling has been widely used in the literature because the
effect of the microstructure noise and potential asynchronicity of the data is less important at this
frequency, see also Liu, Patton, and Sheppard (2015). The jump truncation threshold is the same
as in simulations, see Section 6. The number of observations in the local window is taken as in

Theorem 1 to be k, = 8A,, /2. We take 6 = 2.5 and A, = 1/252/(6.5 x 12), i.e., A, is 5 minutes
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(with one year being a unit of time), which corresponds to the local window of approximately one
week.

To obtain the Idiosyncratic Volatilities, the preliminary step is to estimate the Return Factor
Model (R-FM) for each stock. Figures F.1 and F.2 contain plots of the time series of the estimated
R%/ j of the R-FM for each stock.® Each plot contains monthly R%, j from two Return Factor Models,
CAPM and the Fama-French regression with market, size, and value factors. Figures F.1 and F.2
show that these time series of all stocks follow approximately the same trend with a considerable
increase in the contribution around the crisis year 2008. Higher R%/ j indicates that the systematic
risk is relatively more important, which is typical during crises. R%j is consistently higher in the
Fama-French regression model compared to the CAPM regression model, albeit not by much. We
proceed to investigate the dynamic properties of the panel of Idiosyncratic Volatilities.

We first investigate the dependence in the (total) Idiosyncratic Volatilities. Our panel has
435 pairs of stocks. For each pair of stocks, we compute the correlation between the IdioVols,
Corr (Czi,Czj), see Section 3.2 for the implementation details. All pairwise correlations are pos-
itive in our sample, and their average is 0.55. We find that both types of estimators, AN and
LIN, produce very similar results and report only the AN estimator for brevity. Figure 1 maps the
network of dependency in the IdioVol. We simultaneously test 435 hypotheses of no correlation,
and Figure 1 connects only the assets, for which the null is rejected. We account for multiple test-
ing by controlling the false discovery rate at 5%. Overall, Figure 1 shows that the cross-sectional
dependence between the IdioVols is very strong.

Could missing factors in the R-FM provide an explanation? Omitted return factors in the
R-FM are captured by the idiosyncratic returns, and can therefore induce correlation between the
estimated IdioVols, provided these missing return factors have non-negligible volatility of volatil-
ity. To investigate this possibility, we consider the correlations between idiosyncratic returns,
Corr(Z;, Z;).° Table 2 presents a summary of how estimates Corr(Z;, Z;) are related to the

estimates of correlation in IdioVols, Corr(Cz;,Cz;). In particular, different rows in Table 2 dis-

Jg Czj,pdt
JE Cyjedt

R%j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R%j requires a choice of a
block size for the spot volatility estimation; we choose two hours in practice (the number of observations in a block,
say ln, has to satisfy lfLAn — 0 and lfLAn — 00, so it is of smaller order than the number of observations k,, in our
estimators of Section 3).

?Our measure of correlation between the idiosyncratic returns dZ; and dZ; is

8For the j'" stock, our analog of the coefficient of determination in the R-FM is R%j =1- . We estimate

foT Czizjdl

\/fOT CZi,tdt\/foT Czj,tdt’

Corr(Z;, Z;) =

i,j=1,....ds, (40)
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Figure 1: The network of dependencies in total IdioVols. The color and thickness of each line is proportional
to the estimated value of Corr (Cyz;, Cz;), the quadratic-covariation based correlation between the IdioVols,
defined in equation (8) (red and thick lines indicate high correlation). We simultaneously test 435 null
hypotheses of no correlation, and the lines are only plotted when the null is rejected.

play average values of Corr (Czi,Czj) among those pairs, for which \@"(Zi, Z;)| is below some
threshold. For example, the last-but-one row in Table 2 indicates that there are 56 pairs of stocks
with ]C/’OE°(Z,~,Z]~)] < 0.01, and among those stocks, the average correlation between IdioVols,
Corr (Czi,Czj ), is estimated to be 0.579. We observe that Corr (Czi,Cgzj) is virtually the same
compared to pairs of stocks with high |Corr(Z;, Z;)|. These results suggest that missing return
factors cannot explain dependence in IdioVols for all considered stocks. This finding is in line with
the empirical analysis of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) with daily and monthly
returns.

To understand the source of the strong cross-sectional dependence in the IdioVols, we con-
sider the Idiosyncratic Volatility Factor Model (IdioVol-FM) of Section 2. We first use the market
volatility as the only IdioVol factor.!® Table 3 reports the estimates of the IdioVol loading (Vz;)
and the R? of the IdioVol-FM (RZ!%VH™ "see equation (10)). Table 3 uses two different defi-
nitions of IdioVol, one defined with respect to CAPM, and a second IdioVol defined with respect
to Fama-French three factor model. For every stock, the estimated IdioVol factor loading is posi-

tive, suggesting that the Idiosyncratic Volatility co-moves with the market volatility. Next, Figure

where Cziz;+ is the spot covariation between Z; and Z;. Similarly to Rffj, we estimate Corr(Z;,Z;) using the
method of Jacod and Rosenbaum (2013).

10%We also considered the volatility of size and value Fama-French factors. However, both these factors turned out
to have very low volatility of volatility and therefore did not significantly change the results.
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2 shows the implications for the cross-section of the one-factor IdioVol-FM when the IdioVol is
defined with respect to CAPM. The average pairwise correlations between the residual IdioVols,
Corr (Czi,Czj), decrease to 0.25. However, the market volatility cannot explain all cross-sectional
dependence in residual IdioVols, as evidenced by the remaining links in Figure 2.

Finally, we consider an IdioVol-FM with ten IdioVol factors, market volatility and the volatilities
of nine industry ETFs. Figure 3 shows the implications for the cross-section of this ten-factor
IdioVol-FM when the IdioVol is defined with respect to CAPM. The average pairwise correlations
between the residual IdioVols, Corr (Czi,Czj), decrease further to 0.18. As we can see from Figure
3, the remaining cross-sectional dependence is statistically insignificant after accounting for multiple
testing.!! For completeness, Figure F.3 in the Appendix graphs all correlations of Figures 1 — 3.

For comparison, we also calculate the naive estimators, see equation (15). Of course, we do
not have valid confidence intervals to accompany these estimators. In our data set, the relative
differences between the naive and the bias-corrected estimators are around 4% for vz, they range,
across stocks, between 3 and 6% for RQZ’;deOl_FM, between 2 and 7% for Corr (Cz;,Cz;), and
between —42% and 7% for Corr(Ces!, C’gefid). We find that in the instances where the differences
are small, the multiplicative bias, i.e., the factor 2/3, dominates the additive bias both in the
numerator and the denominator, so that the multiplicative bias approximately cancels out. We find
that the differences between the bias-corrected and naive estimators increase if we only consider

the time period before or after the financial crisis of 2009.

"Recall that we are using false discovery rate to control for multiple testing, and notice from Figure 2 that the
number of individually rejected null hypotheses is 16, less than 0.05 x 435.
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Figure 2: The network of dependencies in residual IdioVols with a single IdioVol factor: the market variance.
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Figure 3: The network of dependencies in residual IdioVols with ten IdioVol factors: the market variance
and the variances of nine industry ETFs.

In both figures, the color and thickness of each line is proportional to the estimated value of
Corr (C5, Cg"f“i), the quadratic-covariation based correlation between the residual IdioVols, defined in
equation (9), of each pair of stocks (red and thick lines indicate high correlation). We simultaneously test
435 null hypotheses of no correlation, and the lines are only plotted when the null is rejected.
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Sector Stock Ticker

Financial American International Group, Inc. AlG
American Express Company AXP
Citigroup Inc. C
JPMorgan Chase & Co. JPM
Energy Chevron Corp. CvX
Exxon Mobil Corp. XOM
Consumer Staples Coca Cola Company KO
Altria MO
The Procter & Gamble Company PG
Wal-Mart Stores WMT
Industrials Boeing Company BA
Caterpillar Inc. CAT
General Electric Company GE
Honeywell International Inc HON
3M Company MMM
United Technologies UTX
Technology Hewlett-Packard Company HPQ
International Bus. Machines IBM
Intel Corp. INTC
Microsoft Corporation MSFT
Health Care Johnson & Johnson JNJ
Merck & Co. MRK
Pfizer Inc. PFE
Consumer Discretionary The Walt Disney Company DIS
Home Depot Inc HD
McDonald’s Corporation MCD
Materials Alcoa Inc. AA
E.I. du Pont de Nemours & Company DD
Telecommunications Services AT&T Inc. T
Verizon Communications Inc. VZ

Table 1: The table lists the stocks used in the empirical application (for the time period 2003-2012). They are
the 30 constituents of DJIA in 2007. The first column provides the Global Industry Classification Standard
(GICS) sectors, the second the names of the companies and the third their tickers.
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CAPM FF3 Model

Stock ;}72 R% Idio Vol-FM p—Val Az R% Idio Vol-FM p—val
AIG | 1.49 0.02 0.093 | 1.53 0.02 0.085
AXP | 3.02 0.27 0.146 | 2.98 0.27 0.149
C 3.46 0.108 0.007 | 3.48 0.11 0.007
JPM | 2.44 0.20 0.007 | 2.46 0.21 0.006
CvX | 1.08 0.51 0.030 | 1.07 0.51 0.030
XOM | 0.60 0.48 0.044 | 0.61 0.49 0.043
KO |0.33 0.58 0.012 | 0.33 0.58 0.011
MO | 0.44 0.35 0.001 | 0.44 0.35 0.001
PG 0.43 0.63 0.001 | 0.43 0.63 0.002
WMT | 0.45 0.58 0.006 | 0.45 0.56 0.008
BA 0.47 0.42 0.003 | 0.48 0.44 0.003
CAT | 0.69 0.49 0.009 | 0.69 0.48 0.009
GE 1.14 0.26 0.003 | 1.15 0.26 0.002
HON | 0.53 0.44 0.014 | 0.53 0.43 0.014
MMM | 0.39 0.55 0.000 | 0.38 0.54 0.000
UTX | 0.50 0.52 0.003 | 0.50 0.53 0.004
HPQ | 0.65 0.33 0.004 | 0.66 0.34 0.004
IBM | 0.35 0.48 0.011 | 0.35 0.47 0.012
INTC | 0.46 0.46 0.003 | 0.46 0.46 0.003
MSFT | 0.68 0.52 0.008 | 0.67 0.51 0.010
JNJ | 0.41 0.68 0.007 | 0.40 0.67 0.007
MRK | 0.54 0.32 0.001 | 0.54 0.32 0.001
PFE | 0.43 0.34 0.002 | 0.43 0.34 0.001
DIS | 0.57 0.48 0.001 | 0.58 0.49 0.001
HD 0.66 0.45 0.010 | 0.66 0.45 0.010
MCD | 0.29 0.29 0.003 | 0.29 0.29 0.003
AA 3.03 0.41 0.019 | 3.04 0.42 0.018
DD | 0.61 0.59 0.001 | 0.61 0.59 0.001
T 0.76 0.45 0.003 | 0.76 0.44 0.003
V7 0.54 0.55 0.000 | 0.54 0.54 0.001

Table 3: Estimates of the IdioVol factor loading (7z, see equation (6)), and the contribution of the market

p$2,I1dio Vol-FM

volatility to the variation in the IdioVols (R7

given individual stock, see equation (37).
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, see equation (10)). The table considers two R-FMs:
the left panel defines the IdioVol with respect to CAPM, and the right panel defines the IdioVol with respect
to the three-factor Fama-French model. In both cases, the market volatility is the only IdioVol factor. P-val
is the p-value of the test of the absence of dependence between the IdioVol and the market volatility for a




6 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data gener-
ating process (DGP) is similar to that of Li, Todorov, and Tauchen (2013) and is constructed as
follows. Denote by Y; and Y5 the log-prices of two individual stocks, and by X the log-price of
the market portfolio. Recall that the superscript ¢ indicates the continuous part of a process. We

assume
dX; = dXf +dJss, dXf=/CxdW;,
and, for j =1, 2,
dYjy = BdX{ + dYfy + dJju, Y, = /CrjudWiy.

In the above, C'x is the spot volatility of the market portfolio, /V[71 and Wg are Brownian motions
with Corr(dWLt,sz’t) = 0.4, and W is an independent Brownian motion; Ji,.J2, and J3 are
independent compound Poisson processes with intensity equal to 2 jumps per year and jump size
distribution N(0,0.022). The beta process is time-varying and is specified as 8; = 0.540.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four processes

f1,- .-, fa as mutually independent Cox-Ingersoll-Ross processes,

df1y = 5(0.00 — fi)dt + 0.35\/f17t< — 0.8dW; + /1 — 0.82dBLt>,

df;e = 5(0.09 — f;,)dt +0.35\/f;4dB,, , for j =2,3,4,

where Bi,..., By are independent standard Brownian Motions, which are also independent from

112 We use the first process f; as the market

the Brownian Motions of the return Factor Mode
volatility, i.e., Cx; = fi:. We use the other three processes fo, f3, and f4 to construct three
different specifications for the IdioVol processes Cz1; and Cza;, see Table 4 for details. The
common Brownian Motion W; in the market portfolio price process X; and its volatility process
Cx: = f1+ generates a leverage effect for the market portfolio. The value of the leverage effect

is —0.8, which is standard in the literature, see Kalnina and Xiu (2017), Ait-Sahalia, Fan, and Li
(2013) and Ait-Sahalia, Fan, Laeven, Wang, and Yang (2017).%3

'2The Feller property is satisfied implying the positiveness of the processes (fj¢)1<j<a-
13Notice that by It6 Lemma, each of these three models can be expressed at the level of equation (1) for the vector
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CZl,t CZZ,t
Model 1 0.14+1.5f; 0.14+1.5f3¢
Model 2 0.1+ O-GCX,t + 0-4f2,t 0.1+ O~5CX,t + 0.5f37t
Model 3 0.1+ 0.45Cx; + foy +04fs; 0.1+ 0.35Cxs + 0.3f3, +0.6f1,

Table 4: Different specifications for the Idiosyncratic Volatility processes C'z1+ and Cza ;.

We set the time span 1" equal to 1,260 or 2,520 days, which correspond approximately to 5
and 10 business years. These values are standard in the nonparametric leverage effect estimation
literature (see Ait-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2017)), where the rate of

convergence is also A~1/4

. Each day consists of 6.5 trading hours. We consider two different values
for the sampling frequency, A,, = 1 minute and A,, = 5 minutes. We follow Li, Todorov, and
Tauchen (2016) and set the jump truncation threshold u, in day ¢ at 33tA2'49, where o; is the
squared root of the annualized bipower variation of Barndorff-Nielsen and Shephard (2004). We
choose four different values for the width of the subsamples, which corresponds to 6§ = 1.5,2,2.5
and 3 (recall that the number of observations in a window is k, = 6//A,,). We use 10,000 Monte
Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators (using Model 3). We consider

the following estimands:
e the IdioVol factor loading of the first stock, vyz1,

e the contribution of the market volatility to the variation of the IdioVol of the first stock

2, Idio Vol-FM
RZl ’

e the correlation between the Idiosyncratic Volatilities of stocks 1 and 2, Corr (Cz1,Cz2),
e the correlation between the residual Idiosyncratic Volatilities, Corr (C’gef’id, C’%Sid).

The interpretation of simulation results is simpler when the quantities of interest do not change
across simulations. To achieve that, we generate once and keep fixed the paths of the processes
Cx, and (fj¢)o<j<a and replicate several times the other parts of the DGP.

In Table 5, we report the median bias, the interquartile range (IQR), and the RMSE of the
two type of the bias-corrected estimators as well as the naive estimator for each estimand using

5 minutes data over 10 years. Consider first the comparison of the AN and LIN estimators. One

(X¢,Y1,4,Y2:)" and equation (2) for the volatility matrix of this vector.
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does not consistently overperform the other in terms of the bias or the IQR. Interestingly, in
terms of the RMSE, the LIN estimator outperforms the AN estimator in every scenario considered.
The naive estimators are substantially biased. The comparison of the bias-corrected estimators
and the naive estimators reveals the usual bias-variance trade-off, as the bias-corrected estimators
have smaller bias but larger IQR than the naive estimator. In terms of RMSE, the bias-corrected
estimators generally outperform the naive estimator: RMSE is significantly lower when estimating
Y71, R%{dw Vol-bM = . Corr (Cz1,Cz2), while the results for Corr (C’gefid, C%Sid) are mixed.

It is also informative to see how these results change when we increase the sampling frequency. In
Table 6, we report the results with A,, = 1 minute in the same setting. The qualitative conclusions
of Table 5 remain true in Table 6. Compared to Table 5, the bias and IQR are smaller. However,
the magnitude of the decrease of the IQR is small.

Finally, Table 7 contains results from same experiment using data sampled at one minute over
5 years. Despite using more than twice as many observations than in the first experiment, the
precision is not as good. In other words, increasing the time span is more effective for precision
gain than increasing the sampling frequency. The qualitative conclusions generally remain the same
as in Table 5.

Next, we study the empirical rejection probabilities of the three statistical tests as outlined in
Section 4.4. The first null hypothesis is the absence of dependence between the IdioVols, H} :
[Cz1,Cz2)r = 0. The second null hypothesis we test is the absence of dependence between the
IdioVol of the first stock and the market volatility, H3 : [Cz1, Cx]r = 0. The third null hypothesis
is the absence of dependence in the two residual IdioVols, HS’ : [Cgefid, %Sid]T = 0. We use Model
1 for the first two hypotheses and Model 2 for the third hypothesis.

The three panels of Table 8 contain the empirical rejection probabilities for the three null
hypotheses. We present the results for two sampling frequencies (A,, = 1 minute and A, =
5 minutes) and the two type of estimators (AN and LIN). We see that the empirical rejection
probabilities are reasonably close to the nominal size of the test. Neither type of estimator (AN or
LIN) seems to dominate the other. Consistent with the asymptotic theory, the empirical rejection
probabilities of the three tests become closer to the nominal size of the test when frequency is

higher.
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A, = 5 minutes

A, = 1 minute

=15 0 =20 =25
AN LIN AN LIN AN LIN

=15 0 =20 0 =25
AN LIN AN LIN AN LIN

Panel A : H& : [Cz1,Cgze)lr = 0, Model 1

a=10% 97 106 106 12.6 9.7 10.3 10.2 9.7 100 102 98 10.2
a=5% 47 51 45 53 48 56 5.3 53 52 53 49 51
a=1% 09 11 09 12 09 1.1 1.1 11 12 1.1 1.0 1.0

Panel B : Hg : [Cz1,Cx]r = 0, Model 1

a=10% 12.1 10.2 10.0 10.6 9.8 11.0 11.0 104 103 104 104 104
a=5% 62 50 45 52 46 54 5. 54 52 51 52 53
a=1% 15 10 08 1.0 09 1.2 1.1 11 1.0 09 08 1.0

Panel C : H : [0, O35 r = 0, Model 2

a=10% 10.0 10.1 12.1 10.8 9.9 126 10.1 103 106 11.3 10.1 114
a=5% 50 63 51 63 51 6.7 5.6 25 53 59 52 6.0
a=1% 11 15 08 16 1.1 14 1.1 12 13 13 13 1.5

Table 8: Panel A contains the empirical rejection probabilities of the test of absence of dependence between
IdioVols. Panel B contains the empirical rejection probabilities of the test of absence of dependence between
the IdioVol and the market volatility. Panel C contains the empirical rejection probabilities of the test
absence of dependence between residual IdioVols. T' = 10 years. « denotes the nominal size of the test.

7 Conclusion

We introduce an econometric framework for analysis of cross-sectional dependence in the IdioVols of
assets using high frequency data. First, we provide bias-corrected estimators of standard measures
of dependence between IdioVols, as well as the associated asymptotic theory. Second, we study
an IdioVol Factor Model, in which we decompose the variation in IdioVols into two parts: the
variation related to the systematic factors such as the market volatility, and the residual variation.
We provide the asymptotic theory that allows us to test, for example, whether the residual (non-
systematic) components of the IdioVols exhibit cross-sectional dependence.

To provide the bias-corrected estimators and inference results, we develop a new asymptotic
theory for general estimators of quadratic covariation of vector-valued (possibly) nonlinear trans-
formations of the spot covariance matrices. This theoretical contribution is of its own interest, and
can be applied in other contexts. For example, our results can be used to conduct inference for the

cross-sectional dependence in asset betas.
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We apply our methodology to the 30 Dow Jones Industrial Average components, and document
strong cross-sectional dependence in their Idiosyncratic Volatilities. We consider two different sets
of Idiosyncratic Volatility factors. We find that a single market volatility factor cannot fully account
for the cross-sectional dependence in Idiosyncratic Volatilities, while this conclusion is reversed with
additional industry volatility factors. For each model, we map out the network of dependencies in

residual (non-systematic) Idiosyncratic Volatilities across all stocks.
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Appendix

The Appendix collects all proofs (Sections A-D), and presents additional figures for the empirical
application (in Section F).

A Notation for Proofs

Our notation is similar to that of the proofs of Jacod and Rosenbaum (2015) whenever possible. Throughout,

we denote by K a generic constant, which may change from line to line. We let by convention Zf/:a =0
when a > a’. For simplicity, we omit the subscript r for results involving only one object with this subscript.
By the usual localization argument, there exists a w-integrable function J on E and a constant such that
the stochastic processes in equations (26) and (27) satisfy

1ol 811 llell, 2], 7 < A [6(w, ¢, 2)[|" < T (2). (A1)

For any cadlag bounded process Z, we set

Nes(Z) = \/IE< sup (| Zese —Zt||2|fin), and

0<u<s

ni(Z) = \/E< sup || ZG—1)a,4u — Z(i—1)An||2\]:fl)~

0<u<jA,
For convenience, we decompose Y; as

Yy =Yo+ Y+ AY..

s<t

where Y/ = f(f b.ds + fot osdWs and b = by — [ (¢, 2)1q6(1,2)) <137 (d2).
Let @’” be the local estimator of the spot variance of the unobservable process Y7, i.e.,

kn—1
(Aﬁ_uy’)(AZ_uy)’T = (C{nygh)lémhéd- (A.2)

K2

~ 1
Ccm =

¢ knAg,
u=0
There is no jump truncation applied in the definition of 6{” since the process Y is continuous. Hence, it is

more convenient to work with C/” rather than C (defined in equation (14)).
We also define

al = (APY')(ArY')T —CPA,, v =C" —CPF, and A} =Gty —C, (A.3)
which satisfy
kn—1
n 1 n n n n n n n
Vi T A Z (aiy; + (Cy; — C)AR) and A = vigk, — 1) + An(Cilyy, — CF). (A.4)

The following multidimensional quantities will be used in the sequel

) = - AIYAIY)T = Oy, ) = Al
¢l = BE@IIFL), ") = )} — () with ¢ (@)} = (¢ @)}

)1§g,h3d'
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We also define, for m € {0, ..., 2k, — 1} and j,l € Z,

. 2kn—1
-1 if0<m<k, "
e(1)y, = { ‘ @ = > ey =(m+1)A(2k, —m - 1),
+1 if k, <m < 2k,, gl

li /
For any u, v, m,u’, v, we set

1 otherwise,

n _{I/An ifu=v=1

(I-m—-1)V(2k, —m—1)

AMu,v;m)7 ) = ka Z e(u)ge(U)grm,  Aw,v)y, = Au,v;m)g o,
g=0v(j—m)
2hn—1
M (u, v;u', 0" )n = 23 200 Z Au,v)m, ).

Additionally, set

[T/An] an -1

A11(H, gh,u; G, ab,v) Z ( Z e(u ) (Ogn HOapG)(CPay,, IS ()" (0) 7
n =2k, 7=0
(T/An] . ,
= Mu,0)5 Y (O HOuG)(CF o, )G ()] "¢ (0)7, (A.5)
i=2ky,
and
g [T/A] (i—1)A(2ky —1) (2k, —m—1)
AT2H, gh,ws G, ab v} = 5 ; (01 HOaG)(CF5,,) mZ: ; e(W)7e()im

X Cgh (W)imCan(v)§ -
(A.6)

B Auxiliary Lemmas and Theorems

This section presents useful auxiliary results, which are used in the proofs of Theorems 1 and 2. The results
of this section are proved in Section E below.

First, we explain why we can assume, without loss of generality, that the derivatives of functions H.,
and G, are bounded, for 7 = 1,...,k. Assumptions of Theorem 1 imply Lemma 2 of Li, Todorov, and
Tauchen (2017a). Therefore, we can assume that the variables C;a, are bounded, uniformly over i €
{0,...,[T/A,] — kn, + 1}, with probability approaching one. Using the spatial localization argument of Li,
Todorov, and Tauchen (2016), which in turn uses the spatial localization argument of Li, Todorov, and
Tauchen (2017a), we can assume that H, and G, are compactly supported without loss of generality. Hence,
the derivatives of functions H, and G, are bounded, for r =1,..., k.

’ ’

_—  LIN _—_ AN
Theorem B1. Let [H(C),G(C)];  and [H(C),G(C)ly  be the infeasible estimators obtained by replacing

N ., ——  LIN _—_ AN
C? by C;™ in the deﬁmtion of [H(C),G(C)]y and [H(C),G(C)]; in equations (18) and (16). As long
as 3/4(2 —r) < w < 3, we have

LIN — LIN’

AVAIHC). GOy ~[H(O).GEC)y )0
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— AN’

wnd 8 ((HE), GO, ~ HE), GO ) o (B.7)

Theorem B1 allows, in particular, to focus on the derivation of the asymptotic distributions of

’

_——  LIN _— AN
[H(C),G(C)]; and [H(C),G(C)]; . The next theorem connects the two estimators that we have intro-
duced. To state the theorem, define

. d  [T/An]—2k,+1
[H(C),G(C) > Z ((athaabG)<C?>[<O£,fh G om)(Crt = O
q,hab 1

. ki(é?;n,gaa;n,hb + agn,gbagn,ha)} ) )

n
with C7* = C(;_1)a,,, and the superscript A stands for “approximated”. For simplicity, we do not index the
above quantity by a prime although it depends on C;" instead of C7'.

Theorem B2. Under the assumptions of Theorem 1, we have

A (@GN, ~ HELEON) T 0 and

AT (@) GC)y ~ [HO).GE)) S50 (B)

’ ’

_—— _LIN — A
Theorem B2 shows that the two estimators [H(C),G(C)];  and [H(C),G(C)]; can be approximated

by a certain quantity with an error of approximation of order smaller than A, !
Now, we decompose the approximated estimator as follows

—— (4) — (A1) — (A2)
(H(C), GOy =[H(C),GO)ly —[H(C),GO)r (B.9)
with
(A1) 3 d  [T/Ap]—2kn+1 . . o
HEC).CONr =5 > Y (0aHG) (O )G = G (L = G,
" g,h,a,b=1 i=1
and

[T/An]—2kn+1

Z (8th6abg) (a;n)(é\v;n,gaa;n,hb + a;n,gbé;n,ha).

g,h,a,b=1
The following theorem holds:

Theorem B3. Under the assumptions of Theorem 1, we have

1 /\ ( 1) R
([H(C), Z Z 1(H, gh,u; G, ab,v)} + A12(H, gh,u; G, ab,v)}

1/4
n g,h,a,b=1u,v=1

+ A12(G, ab,v; H, gh, u)’%) ~2.0.

Lemma B1. For any cadlag bounded process Z, for allt,s >0, j,k >0, set ne,s = nt,s(Z). Then,

[t/An] [t/An]
E( > nkn> — 0, AnlE< > 77i,2kn) —0
i=1 1=1
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[t/An]
E(ni+j,k|]:i"> < Nij+k and An]E< Z 7’]1"4]%) — 0.

i=1

Lemma B2. Let Z be a continuous Ité process with drift b2 and spot variance process CZ, and set Ni,s =
ne,s(bZ,c¢?). Then, the following bounds hold:

]E(Zt’]:o) - tboz‘ < Kitnoy
B(Z]ZF - tCOZ’jk‘}"O)) < K32 (VA +10.)
E((Z]ZF —tcZ%) (P - C()Z’lm)‘fo)’ < K

E(ZfoZfZ?‘fo) _ A%(Coz’jk(]oz’lm 4 COZ,leOZ,km + COZJmCOZ,kl)‘ < Kt%/?

E(Z] ZF 7! )( < K¢?
6 A3 o . .
227 - B S e | < ki
=1 <l k<k’ m<m/
q
E( swp |2~ 2 ]-'t) < K592, and HIEJ(ZHS - Zt> F < Ks. (B.10)
wel0,s

(B.11)

Lemma B3. Let ¢ be a r-dimensional F['-measurable process satisfying |E(CHFL )| < L' and
IE(HC{IH‘I‘]:ZLJ < Lg. Also, let o} be a real-valued F]*-measurable process with ]E(\|<p?+j71||q‘.7ﬁl) < L9
forq>2and 1 <j <2k, —1. Then,

2k, —1

( Z <)01+j 1<z+7

Lemma B4. Under the assumptions of Theorem 1, we have:

;l_1> < Ko L9 (Loki/? + L'kt ).

4 . .
e A fn) (Cm gaCn hb + On gbOn ha)(cn,jlop,km + C@,jmcﬁ,kl)

k2 % % % i i

]E()\n]kAn lm/\ngh )\n ab

i 4An (Cn,jlcp,km + C@,jmcn,kl>6ﬂ79hyab B 4An (C@,gacﬂ,hb o Cn,gbcﬁ,ha)éﬁﬂlhlm
3 % i % % i 3 i % 4 i %
4 knAn Q—n, ab—=n,jk,Im
B %Ci gh, bCi gkl < KAn(Avlz/g‘f'nznAkn)'

Lemma B5. Under the assumptions of Theorem 1, we have:

‘E(Vi"’jkyf’lmyf’gh .7:%") < KA3/4 (A1/4 + nﬁkn), (B.12)

(o (g, - at) o) | < KA ) By

(v (et = et (gl = o) |70)| < ka3 (A 402, (B.14)
(B (Aot ) | < KA (A + i, ). (B.15)
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[E(xp7expmapot F )| < K3 (Al + 0ty )- (B.16)
Lemma B6. Under the assumptions of Theorem 1, we have:
1 (T/An] , b
F Z (Ogn HOubG)(Cil g, ) pgn(u, v)7 Cap(v)] =0, ¥V (u,v) (B.17)
no =2k,
1 T —gh,ab P
NG (ATL(H. gh. v . ab,v) - / O HOwG) (OO dt) L0 when (u) = (22)  (B.1g)
0
| Ry A— 3 (7 ahb b ~h P
G (ATN(H, gh, us G, ab,v) — / (O HOWC)(C(CLCL + O Cl)t) 25 0 (B.19)
when (u,v) = (1,1),
Al/4/17(}[, gh,u; G, ab,v) =5 0 when (u,v) = (1,2),(2,1) (B.20)
C Proof of Theorem 1
We now prove Theorem 1. By Theorem B3, we have
1 — (4] N
NG [H(C),GO)y — Z Z 1(H, gh,u; G, ab,v)} + A12(H, gh, u; G, ab, )",
n g,h,a,b=1u,v=1

+ A12(G, ab,v; H, gh, u)} >:>0

Recalling the definition of A12(H, gh,u; G, ab,v)%} from equation (A.6), Lemma B6 implies that

1 . (4) 2 [T/AL]
(W@ﬂ@h—W@, TQMEIXIZ

1/4
An/ " g.h,a,bu,v=1 i=2k,
[@M%QMMMMWMM)+@M%QMMMMMMMWD£N- (C.21)
Next, define

1
g(Ha gh7 u; Ga ab7 U):l = F(athaabG) (Cianlc )pqh (U v)z Cab(v)n

[t/An]
Z(H, gh,u;G,ab,v)} = A}/‘l Z &(H, gh,u; G,ab,v)}.
i=2k,
Notice that (C.21) implies
1 @ P 2
F([H(C),G(C)]T ~[HEC)L.GOR)E > Y 1/4( (H, gh, u; G, ab, v)}
n g,h,a,b=1u,v=1
+ Z(H,ab,v; G,gh,u)%). (C.22)
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— (4) — (4)
Next, observe that to derive the asymptotic distribution of ([H1 (C),G1(C)p ..., [He(C),G(O)]p ), it
suffices to study the joint asymptotic behavior of the family of processes ﬁZ (H, gh,u; G, ab,v)%. Notice
that £(H, gh,u; G,ab,v)} are martingale increments relative to the discrete filtration (FF). Therefore, to

3

obtain the joint asymptotic distribution of 1/4Z(H7 gh,u; G,ab,v)}, it is enough to prove the following

three properties:

L [t/A]
A((H,ghw;G,ab,v),(H’,g'h’,U’;G’,a’b’,v’)) = Y E((H,gh,u; G ab,v)PE(H'  g'W o' G d'b o)} FF
t
i=2kn,
N A((H, gh,u; G, ab,v), (H',g'h’,u’;G',a’b’,v’)) , (C.23)
t
t/An]
(‘f H,gh,u; G, ab, v) ‘ ‘]—'Z” 1) RN 0, and (C.29)
1=2k,,
[t/An]
n n (3 P
B(N; H, gh,u; G,ab,v)} :== > E(g ,gh,u; G, ab, v)’! AiNm_l) = (C.25)
1=2k,,

for all t > 0, all (H,gh,u;G,ab,v),(H',¢g'h ;v ;G',a’t/,v") and all martingales N which are either bounded
and orthogonal to W, or equal to one component W7,
Since the derivatives of H, and G, are bounded, equations (C.24) and (C.25) can be proved by an extension
of (B.105) and (B.106) in Ait-Sahalia and Jacod (2014) to multivariate processes.
Next, define

(Caa'CP - Cgv ey it (v,0) = (1,1)

Ve () = oy’ it (v,0) = (2,2)
0 otherwise,

al’ld / , ’ ’
o (Cr e+ o ey i (wu) = (1,1)
Von (u,u)y =S g/o" i (u,u) = (2,2)

0 otherwise.

Using again the boundedness of the derivatives of H, and G,., we can show that

A((H, gh, s G, ab,o), (H', g/ W '3 G a'd 1)) =
t
t Iy
M(u, v, ) / (Do HOw GOy Howiy CY(CVEY (0,0) T () s,
0

with
3/03 it  (u,v;u/,0") = (1,1;1,1)
M(u, v, o) = 4 /49 i (w0 =(1,21,2),(2,1;2,1)
1510/280 if  (u,v;u’,v") = (2,2;2,2)
0 otherwise.
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Therefore, we have
A((H,gh,u;G,ab,v), (H’,g'h’,u’;G',a'b’,v’))T =

B [T (g HOay GOgr1y H' Dy G') (C) (CF7 I 4 M Py (Cp' Y 4 Cg O )dt,
if (u,v;u’,0") = (1,1;1,1)
2 T Oy HOwG Oy H' Oy G') (C) (CF9 1Y 4 97 YT e i (w, v/, 0') = (1,21,2)
3 T g HOup GOy H' Darty G') (Cy) (C29' CY 4 €0 0V YT it i (w50, 0') = (2,152, 1)
1510 (70, HO GOy H' Doy &) (CY T T ™ i, i (u, 000, 0') = (2,2:2,2)
0 otherwise.
— (4)

Using equation (C.22), we deduce that the asymptotic covariance between [H,.(C),G.(C)]; and
—— (4)
[Hs(C),Gs(C))y  is given by

d d 2
Z Z Z (A((H,.,gh,u; G, ab,v), (Hs,g’h’,u’;Gs,a'b’,v’))T

g,h,a,b=1 g’ h’ 0’ b'=1u,v,u’ ,v'=1

+A((Hy, ghyu; Gr,ab,v), (H, ¥ '3 G, W)

+A((Hr,ab, 3 Gy ghyw), (o, B o' Gya' 0))
+A((Hm ab,v; Hy, gh, u), (Hs,a't',v'; Gs, g'H, U’))T> :

The above expression can be rewritten as

d d T
6 j 1) a m am
2 2 (eg, /0 (9gn Hy 00y G031 HoD1n G (C) [ (CECI + OO ('O + O

g,h,a,b=1 j,k,l,m=1
HeoP v opropyctiorm + o ey ar

1516

t ‘ |
m / (aghH?"aabGraijsalmGs(Ct)) [6gh7jk6ab,lm n aab,]kagh,lm} dt
0

3 [t ‘ bim o
35 /O (O Hy 0abGr0j1, HoO1m G5 (Cr)) [(Cfﬂcthk + gt T 4 (catetm - comethy ot
H(ogiehm 4 comohyct IR L (s ok cgkcfj)éfh’lm] dt) ,
which completes the proof.

D Proof of Theorem 2

Using boundedness of the derivatives of H,., G, Hs; and G5 and Theorem 2.2 in Jacod and Rosenbaum (2015),
one can show that
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Next, by equation (3.27) in Jacod and Rosenbaum (2015), we have

3 Ar,s,(3 6’\7",5, 1 P r,5,(3
Sy = Sy £, e
Finally, to show that
1510 9 r,s (2) 4 Ars,(1) 4, ,8,(3) r,8,(2)
140 462 o4 Tt gt — =,

we first observe that the approximation error induced by replacing @” by é\;" in Theorem 2 is negligible.
For 1 <g,h,a,b,7,k,l,m <dand 1<r s <d, we define

[T/A,]—4k,+1
Wi= Y (OgnH0ubGrOgn HyOlmGo) (CP)NDT AT TE el Al
i=1

Ao Hy Doy Gy 03 Hy 0y G ) (CIYE(N P NI TE AL Al | 7,

()i = (

(2)7" = (Ogn Hy-0asGr 01 Hi O G ) (CIY AP INPTEN G N — B APIENT L NS | F),

w(3)} ( Ogh H, 00y G0 Hy Oy G's ) (C) — (Dg H 00y G0 Hs0y G )(Cn)>)\n gh/\?,jkk?_‘;gl;%A?_;_l;;n’
[T/ An]—dkn+1

(U)? = ﬁ%(“)? U= 17273'

g)

g)

)

i=1

Now, note that we also have /Wt" = W(l)? + /V[7(2)? + /W(S)? By Taylor expansion and using repeatedly
the boundedness of C;, we obtain

[@(3)7 < K [N o, 117,
which implies E(|@w(3)}]) < KAY* and hence W(3)? ) Using Cauchy-Schwartz inequality and
the bound E(||A?|9|F) < KAY*, we have E(|@(2)"]?) < KA2. Observing furthermore that @(2)" is

Fitak, —measurable, Lemma B.8 in Ait-Sahalia and Jacod (2014) implies W(?)? 0.
Next, define

(Cn,gacn ,hb + Cn gbcn ha)(cn,jlcn km + Cm,]mcn kl)

= O H, 000G 03 H DG (CF) [ 1

‘ k2A,
4 n a —n m
g(cn,]lcn Jkm + Cn,]mcn kl)C ,gh, b (Cn,gacn ,hb + Cn,gbcn ha)C gkl
4(k2A )—n,gh,ab—n,jk,lm

+ 9 Ci Cz :|)

[T/An]—élkn—&-l
Wr = A, W,
i=1

Using the cadlag property of ¢ and C, k,v/A,, — 6, and the Riemann integral convergence, we conclude that
Wr i) Wt where

T
4 ) .
Wr = /0 (g1 H, 0a G031 o0 ) (Cr) | 55 (CP* O + CPCpe) (Gl O + OOy

,4;

gh,ab 4 gk, lm —gh,ab

7(leckm Ctjmctkl)ét ) 7(Cgachb Ci]bctha)ét [ 70

L .

OJ
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In addition, by Lemma B4, it holds that

[T/An]—4k,+1
E(W (1)1 —Wr|) < An]E< YA+ ni,4kn)>'

i=1
Hence, by the third result of Lemma B1 we have W}L N Wy, from which it follows that

[T/An]—4k:n+1
=) > (OnHr0apGrdj HoOumG ) (C1)CF (K, Im)C (gh, ab)]
n 1=1
[T/ —4kn+1 _
- = Ogh Hy 0apGr 01 Hy 01 G5 ) (CYCT (gh, ab) NT-IF N1
g J 7 7 7

9

7 W+

7

- = (Ogh Hy-0ap Gy 01 H o0y G5 ) (CIYCI (e, Im) N9 A0

—gh,ab—=jk,lm

T
i) / (athraabGraijsalmGs)(Ct)ct Ct dt.
0

The result follows from the above convergence, the already invoked symmetry argument, and straightforward
calculations.

E Proofs of Auxiliary Lemmas and Theorems

This section is devoted to the proofs of the auxiliary theorems and lemmas (listed in Section B) that were
used to prove Theorem 1 and Theorem 2.

E.1 Proof of Theorem Bl
To show this result, let us define the functions

R(z,y) = i (3th5abG) () (y*" — xgh) (yab _ xab)
g,h,a,b=1
S(x,y) = (H(y) — H(:c)) (G(y) — G(@)
d

U(x) = Z (athaabg> (x)(l.gal.hb_’_xgbxha)’

g,h,a,b=1

for any R? x R? matrices  and 3. The following decompositions hold,
_— AN _— AN’
[H(C),G(O)p —[H(C),G(C)]y
3 [T/AR]—2kn+1

—5e X [(8@G,) - SEC,) - - U@ - UE)

LIN'

H(©),.GO)y ~ [H(C),GO)y
[T/An]—2kn+1

gn X RO - RENO) - € ~UEn)],
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By (3.11) in Jacod and Rosenbaum (2015), there exists a sequence of real numbers a,, converging to zero
such that R N
E(|C — C;"|7) < Kyan AR 7=H1=4 for any ¢ > 0. (E.26)

Since H and G are three times continuously differentiable with bounded derivatives, the functions R and S
are continuously differentiable and satisfy

10 (z, y)l
[oU ()]

K for 1<g,h,a,b<d and J € {S, R}, (E.27)

<
< K, (E.28)

where 0J (respectively, OU) is a vector that collects the first order partial derivatives of the function J
(respectively, U) with respect to all the elements of (z,y) (respectively, ). Using the Taylor expansion,
(E.27) and (E.28), it holds that, for J € {S, R},

(G, Crtr,) = J(C Gt ) < K(IC7 = G+ 11Cy, = City, ) and

U(Cr) - (C )| < K(ICF = G-

7

By equation (E.26), the following condition is sufficient for Theorem B1 to hold:
3
2— —->0.
2-rw 13 0

Using the fact that 0 < @ < 1, we can see that Theorem Bl holds when 3/4(2 — r) < @ < i, which
completes the proof.

E.2 Proof of Theorem B2
Note that we have

d [T/An]—2kn+1

— LIN’ —

[H(C),G(O)p  —[H(C),G(O)lp=5— Y Z Y7 (g, hya,b),
g,hab 1
’ [T/An]72k7n+1 d

N AN N A 3 n n n n,a

HO).GOr ~HO.GO =5 Y. (= X @aHowG)CONN),
n i=1 g,h,a,b=1
with

1/%”(97 ha a, b) = ((8th8abG) (alln) — (athaabG) (Czn)) )\;l,gh)\?,ab7
x; = (HO,) = HIEM) (6(07,) - 6EM).

By Taylor expansion, we have

d
(aghSaabG) (C;”) _ (8gh5'6abG) (Cz") — Z (azy ghsaabG + 8 vy, abGaghS) (C”) n,ay
z,y=1
1 < 4
+3 2 (0% . S0u0G + 02, 15D G + Oy GOMS + 02, GO S ) (@13
Jk,x,y=1
and
S( A;ik Zagh Cm ,gh + Z 2, ghS Cm ghyn jk

J.k.g.h
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1 .
h Sy \mgh, m, gk
+ > Ry SCONTN 4o Y By i S (OO NS

K3 (2

z,y,9,h z,y,7,k.9,h
1 n,S\\n,j
JJkyn,ghyn,zy
+6 Z k yghS (G )N TN,
J.kz,y,9,h

for S € {H,G}, ¢}
for m, 7wy, pu, 7, pa € [0,1]. Although ¢
notation to simplify the exposition.

Set Fi' = Fi—1)a,- By (4.10) in Jacod and Rosenbaum (2013) we have

JE(‘ oy
Combining (E.29), (A.4), (B.10) with Z = ¢ and the Hélder inequality yields for ¢ > 2,

B
The bound in the first equation of (E.30) is tighter than that in (4.11) of Jacod and Rosenbaum (2015)

due to the absence of volatility jumps. This tighter bound will be useful later in deriving the asymptotic
distribution for the approximated estimator. By the boundedness of C; and the derivatives of H and G,

=10+ (1 —m)C, O = 1sC + (1 — ms)Cy, COMS = pgCP + (1 — ps)Cyn

%

and 7 depend on g, h, a, and b, we do not emphasize this in our

kp—1
q
E 04?+j’ ’]:i”) < K,A%kY? whenever ¢ > 2. (E.29)
=0

q
‘]—‘i”) < K,AY for all ¢ > 0 and ]E(

n
Vi

ATL

1) < KA and B|

) < K A4, (E.30)

’(agk,:cy,abGath + 62y ghI—Ia k abG)( ¢ ) ; $y ; jk}‘n gh}‘n @ < K”VnH ||)\nH2 (Egl)

Using the Taylor expansion, we have

in - Z (athaabG)(C?)A;l,gh)\?ab _

g,h,a,b
1 )

Z (OgnHOZ, 1y G + 0gnGOZy  H)(CPY AP 4+ 9N OONIE o and

g,h,a,b,j,k
> (Byn HOupG) (C;") — (8gn HOupG) (C) =

g,h,a,b

> (OgnHOZY 1y G + 0asGOZ 1y G)(CFY (W )IANPIND 4 57
g,h,a,b,x,y

with E(|¢?||F") < KA, and E(|67||F") < KA, which follow by the Cauchy-Schwartz inequality together
with equation (E.30). Given that k, = (A, )~'/2, the previous inequalities imply

1/4 [T/An] =2k, +1 1/4 [T/An]—2k,+1

3A, 3A,
T ' o 2.0 and T 4 or = 0.
i=1 i=1
Therefore, it suffices to show that
SA_1/4 [T/An]—2kn+1
o S OnHP G + 0 HP, G (CHNTN N Byg (B.32)
n i=1 g,h,a,b,j,k
3A_1/4 (T/An]=2kn+1 -
> (OgnHO G + 0gnHOZ, 1pG)(Cly AN = 0, (E.33)

2k, 4 )
=1 g,h,a,b,3,k

These results hold by the bounds in Lemma B5.
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E.3 Proof of Theorem B3

First, we decompose the approximated estimator as

) (A1) —  (A2)
[H(C),G(O)lp =[H(C),GO)ly —[H(C),GO)p (E.34)
with
. (Al) d  [T/An]—2kn+1 N N
[H(C),G(O)y =5— > Z (Ogn HOwG) (CPy) (O — Gty (Ot — ety
ghab 1
and
— A2) 3 d_ [T/An]=-2kn+1 o s o o
[H(C),G( Z Z (athaabG) (Cin)(cin,gacin,hb + Cin,gbcin,ha).
g,h,a,b= i=1

In this section, we use the notation Cf* | = C(;_1)a, and F; = F(;_1)a, to simplify the exposition. Given
the boundedness of the derivatives of H and G and the fact that k, = (A,)~ /2, by Theorem 2.2 in Jacod
and Rosenbaum (2015) we have

1 S 3 . .
W([H(C),G( Z / Dgn HOapG) (Cr)(cf e} + ¢! )dt> Op(1),
n g,hab 1
which yields
1 — @ o
Al/4<[H(C),G( Z / Ogn HOapG) (Cy) (1 + 20 )dt) 0.
n g,h,a,b=1

Using the multivariate quantities defined in Section A, we can show that the following decompositions hold:

kn—1 2

~n A'n 1
Z Z H-J’ itkn i k
=0 u=1 " oj=0 u=1
2ky —1

-~/

c" =

3

~

“M“’ 2 \H
m
£
3

()= () ()5 ()

2
n,gh n,ab 2 :

7=0
2kn—2 2k, —1 2k, —1j—1
n n ngh nab n n,gh n,ab
3 OO 3 S
Jj=0 q=j+1 j=1 ¢=0

Changing the order of the summation in the last term yields

2 2 2k, —1
AP = QZZ< D7 e(w)e(v)¢(u) C(0)
rL _

u=1v=1 3=0
2k, —2 2k, —1 2kn—2 2k, —1
,gh b b ,gh
SN et + 30 S o vmmm)
7=0 gq=j+1 7j=0 qg=j+1
(A1)

Therefore, we can further rewrite [H (C/),E(C)]T as

—— (A —— (A11) — (A12) ——— (A13)

[H(C), GOy =I[H(C),G(O)y  +I[H(O),G(O)y  +I[H(C),G(O)]y ,with
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d 2
— (Alw) —
[H(C),G(O)]p = Z Z Alw(H, gh,u; G,ab,v)}, w=1,2,3,

and

(T/AR]—2kn+1 2k, —1

3 n n n 1 n,a
A11(H gh,u; G,ab,v)7} 2k3 Z Z Ign HOapG)(CJ 1 )e(u)Fe(v)] C(U)Z—J’F%}C(U)ijrjb,
_ g [T/An)=2kn+1 2k, —2 2k 1
Al12(H, gh,u; G, ab,v) = e Z Z Z Ogn HOuG)(C )5(1‘)?5(“)24(U)?ﬁhC(v)ﬁ’;}’,
" §=0 q=j+1

[T/An]—2kn+1 2k, —2 2k, —1

—_ 3 n,a n
A13(H, gh,u; G, ab,v)h = —— Z > (O HOwG)(CP)e()Fe(u)p¢(v) i C(u)is),

2k3
n =0 g=j+1

where we clearly have ZI\Z%(H, gh,u; G, ab,v)} = A12 12(G, ab,v; H, gh,u)%. By a change of the order of the

summation,
3 [T/AR] (2kn—1)A(i—1)
Al1(H, gh,u; G, ab,v)} = 53 Z Z (Dgn HOupG)

i=1 j=0V(i+2k,—1—[T/A,])

n n n n,gh n,ab
(Civ G— 1)€(u)j€(v)j<(u)i (),
g [T/An] (=DACR=1) (ko =m=DAG=m=1)

m(H,gh,u;G,abm)’Tl: o3 Z Z Z (Ogn HOupG)(Ci1_j_ )
J=0V(i4+2kn—1—m—[T/A,])

X e(u)7e(V) 1 mCon ()i mCab (V)7

X

Now, set
[T/A] 2k, —1
All(H gh,u; G ab,v) = Z Z g HOupG)(C} ;1 )e(u )?5(v)?((u)?’ghg(v)?’ab,
" =2k, j=0
(T/An] (i—1)A(2kn —1) (2kn —m—1)
A12(H gh,u; G, ab,v) 2k3’ Z Z Z (0gn HOupG)(CF- o1 m)a(u)?&(v)?+m

n =2k, =0

ngh (u);lfmcab(v)?>

and
- [T/An] 2k, —1
ATV(H, gh,u; Guab, o) = 55 > (D0 e(w)e(@)] ) 0o HOuwG) (C o, )C ()} "¢ (0)}
n =2k, 7=0
(T/An]
= Mu,0)5 Y (OgnHOuG)(CF o, )¢ ()] "¢ (0) 7,
i=2ky,
A12(H, gh,u; G, ab,v)%
3 (T/An] (i—1)A(2kn—1) (2kn—m—1)
=57 2 OnHOG)(Cla,) D Y e)el)mCon () mCu (0]
" i=2k, m=1 Jj=0
[T/An]
= Y (OenHOuG)(Cl o, )Pgn (1, 0)7 Can(0)7,
i=2kn,
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with

2k, —1

pghUU Z /\uvmcgh )

We show below that the following results hold:

P
A1/4 (Alw(H gh,u; G, ab,v)p Alw(H gh,u; G, ab,v)p ) —0 (E.35)

A1/4 (Alw(H gh,u; G, ab,v)p — Alw(H, gh, u; G, ab,v)aﬂ) 0 (E.36)

for all (H,gh,u,G,ab,v) and w=1,2.

E.3.1 Proof of Equation (E.35) for w =1

To prove this result, first, notice that the (u);? he (v)f’ab are scaled by random variables rather that constant
real numbers. Next, observe that we can write

A1l — A1l = AT1(1) + A11(2) 4+ A11(3)  with
o 2k, —1)A[T/AL] <

A11(1) = >

i=1

3 ( A(—1)
2% 2 (O HOuG) (CY- - 1>e<u>?e<v>?><<u>?*gh<<v>?v“,

T SOV (i 2kn—1—[T/An])
[T/An] 3 (2kn*1)/\(i71)
Al11(2) = Z 2/€3< Z (Ogh H 0 G) (CL G- 1)6(1’4)?6(”)?

i=[T/An]—2kn+2 "™ \j=0V(i+2k,—1—[T/A,])
(2kn—1)
= Y (OgnHOWG)(C} 1)6(U)?6(v)?>C(U)?’ghé(v)?’“”,
j=0
— [T/AR]—2k,+1 3 ’ (2kn—1)A(i—1)
Al = %3( > (OgnHOwG)(C;_y )e(w)e(v)?
i=2kn, "\ =0V (i+2k,—1-[T/A,])
(2kn—1)
= > (OgnHOWG)(C} ;- 1)6(U)?6(v)?>C(U)?’ghC(v)?’“b-
j=0

It is easy to see that 11\2(3) = 0. Using equation (B.10) with Z = ¢ and equation (E.29), we obtain
E(I[CDFI9FL) < Kqp E(ICRFIINFLL) < K AL (E.37)
By the boundedness of the derivatives of H and G, the random  quantities

kn— % n n
(%3 Z§2 Ov(zli/;k ji iy, OgnHOuG)(CL; l)s(u)‘s(”)‘) and

J J

2k3 > 2k’ﬁl)( OgnHOupG)(C];_1)e(u) e(v)} are Fl* | — measurable and are bounded by Xﬁ’v defined as
K if (u,v) =(2,2)

A= Kk, if (u,0) = (1,2), (2,1)
K/K: if (u,v) = (1,1).
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Similarly, the quantity

3 (2kn—1)A(i—1)
>
O\ j=0V(i+2k, —1—

is F* {— measurable and bounded by 2X
inequality, we have

[T/An])

E(|¢(w) "¢ (v) | F )

<

(Ogn HOapG)(CFj_1)e(u)}

J

(2kn—1)
e()) = > (0gnHOwG)(CL ;- 1>s<u>;s<v>y>,

=0

- Note also that, by equation (E.37) and the Cauchy Schwartz

< E(IC ()7 IP1F ) PEIC (o) P F ) 2
KA, if (u,v) =(2,2)
KAY? i (u,0) = (1,2),(2,1)
K if (w,v) = (1,1).

The above bounds, together with the fact that &, = 0A, /2, imply E(|Zl\1( 1)) < KAY? and E(|Zl\1(2)|) <
KAY? for all (u,v). These two results together imply /Tl\l( 1) =

yields the result.

E.3.2 Proof of Equation (E.35) for w =2

First, observe that A12 — A12 = 21\2(1) + 21\2(2), with

=0V (i+2k, —1—m—

o(AZY*") and AT1(2) = o(A,Y

(O HOwG) (Clr ) () e(0) )
(T/An])

(2kp—m—1)A(i—m—1)

>

(6 hHaabG)( i—1—j— m)g(u);ﬂ
[T/An])

. (2kn—DA[T/A,] 7 (i—1) 3 (2kn—m—1)A(i—m—1)
TEUEEEDS (Z 7 >
=2 m=1 =0V (i4+2k,—1—m—

x Cgh(u)?_m> Cab(v)7,
—_— [T/A7 (7’_1)/\ 2kn_l) 3
A12(2) = > ( :

=[T/An]—2kn+2 m=1 "

(2kp—m—1)
xe(v)?_,rm)f 3
=0

Notice that the quantity

(2kp—m—1)A(i—m—1)

m,n 3
i = k3 Z
N =0V (i4+2kn, —1—m—[T/A,])
is FJ*,,,_1 measurable and bounded by )\u »- Let

(i-1)

n __
nifg

m=1

3 (2kp—m—1)A(i—m—1)

o3 by

=0V (i+2kn,—1—m—[T/A,])

It follows that s is F,;* ;-measurable and we have
E(lw""*[Fo) <

[E(C(w)i | Fimm—1)]

IN

93

(athaﬂbG)( i—1—75— m)g(u)?g(v)?+m)Cgh(u)?—m>C(lb(v)?'

(O HOwG) (CL 1) ()e(0) )

(OgnHOabG) (Cls ) () F2(0) 1 ) o (W)

()7,
KVA, ifu=1
KA, ifu=2’

%), which



K, fu=1

E nNE Fimme1) < . .
(6@ | Ficnr) {KZM M

Using Lemma B3, we deduce that for z > 2,

u,v
K.k7? ifo=2"

ey < (ORI =1 [R5 =
T KO ) R itu=2

Using the above result, we obtain N /4 A12( ) £ 0. A similar argument yields ﬁ@(?) = 0, which
completes the proof of the equation (E 35) for w = 2. "

E.3.3 Proof of Equation (E.36) for w =1
Define

2k, —1

O, n)f " = o Z (O HOWG)(CIy 1) = (On HOWG)(Clly, ) )e(u)e(v);-

By Taylor expansion, boundedness of the derivatives of H and G, and using (B.10) with Z = ¢, we have

’E( thaabG)( i—j— 1) (athaabG)( i— zkn) Ff—zkn)‘ <K kn, A <KV
E(|(0gn HOupG)(CPj 1) = (Ogn HOapG)(Ciap, ) FFope, )| < K (kn D)2/ SKA?/“,

for ¢ > 2 and for j = O ,2k, — 1. Next, observe that ©(u, v)(c)’i’" is F]*, -measurable and sat-

71—

isfies [O(u, v) 7| < Az, |E( (1,006 F gy, )| < KAYPXn, and E(10(u, o) 1| Py, ) <

KQA%/ 4(XZ’U)‘1 where the latter follows from the Holder inequality. We aim to prove that

Ezi

n

(T/An]
> O, (W)} ’ghc(w?’“"]

=2k,

converges to zero in probability for any H, G, g, h, a, and b with u,v =1, 2.
To show this result, we first introduce the following quantities:

N 1 [T/AR] (c , \
B(1) = 1/4[ S O, o) E(G () (o) | n]
n 1=2k.,,
o) 1 & (C in h b h b
E(2) = 1/4l > O(u,v)g (Cw) "¢ ()" = B(¢(u) "¢ (v)" Iﬁ"l))],

n 1=2k,,

with E = E (1) + E (2). By Cauchy-Schwartz inequality, we have

~ R K if (u,v) = (1,1)
E(J¢(w)7 " ¢(0)7")9) < (A7), where X}, = ¢ KA, if (u,v) = (1,2),(2,1)
KA2 if (u,v) = (2,2)

Since ¢(u)!""¢(v)*" is F-measurable,
the martingale property of ¢(u)!9"¢(v)* — E(¢(u)"¢(v)*|Fr ) implies, for all (u,v),

?

E(|E(2)]?) < KA (AYR )2N0, < KA,
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The latter inequality implies E(Q) £ 0 for all (u,v). It remains to show that E(l) = 0.
Here, we recall some bounds under Assumption 2,

B(C()MI ()M F )| < KA, (E.38)
B(C(1)MI (1) FP ) — (CreeCmh 4 embomha)| < KAY?, (E.39)
B(C(2)m (2 Fr — T AL < KAY2 (VAL + ). (E.40)

Case (u,v) € {(1,2),(2,1)}. By equation (E.38) we have

E(|E(1)|) < KA%AM(AU‘*A” An) < KAY? so E(1) 0.
Case (u,v) € {(1,1),(2,2)}. Set
~ L [T/A o
E()=—7| > 0wy "y,
Ay | i=2kn
- L[/ ,
Ell(l) = 1/4 Z Q(U’U)E)C)ﬂ’n (Vzril - Vf?l%)]
An L i=2k,,
rT/A)
E(1) = —7 | Y O o) () o) FL) — Vi)
An L i=2k,,
where
crgecmht L omgbomha i (u,0) = (2,2)
Vi =P, if (u,v) = (1,1)
0 otherwise

Note that we have E(1) = E’(1) + E”(1) + E"”(1). Using equations (E.39) and (E.40), it can be shown that

- KAg/ (A1/4>\" VAN? i (u,0) = (1,1) s
E([E"(1)]) < v < KA,/? in all cases.

T Kb (A AV i (u,0) = (2,2)

Next, we prove E’(l) = 0. To this end, write
R L [IT/A =2kt P
/ - = non
E'(1) = AL l 2 O(u, )y V(i_l)Anl.

Using the F} 5, _,-measurability of the last sum, we are able to show

1 [T/ An]—2kn+1
C)im142kn,n n P
A”“l S EO )y V(“)An|fi_1)|] 20 and
n =1
[T/An]—2kn+1
2kn —2 C),i—1+42k, ,n
Al/2[ Z ]E<|@(u,v)(() pmt V(Z-1)An)|2)] = 0.
n i=1

The first result readily follows from the inequality

. . KAY 3 if = (1,1
|E(®(u,v)(()c)" 142k, Vii—nya, [Fii)| < 12 1 (u,0) = (1,1) < KA%? in all cases,
KAZN Ay if (u,v) = (2,2)
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while the second is a direct consequence of
1/2/Yn .
2 o KAP(Qu)? i ()
T\ KA )2A2 i (u,v)

= s

E(|®(u,v)(()c)’i_H%"’n‘/(i_l)A < KA%? in all cases.

n

—~
[N
[N

S~—

7

Finally, to prove that E”(l) =5 0, we use the fact that

E(10(u,0)S7™ (Vi_iya, — Vieakya,) ) < E(O(w, o) YYV2E([Vii_nya, — Vieaka, )Y
KA, if (u,v) = (1,1)
T\ EAY AR AN (u,0) = (2,2)

which follows from the Cauchy-Schwartz inequality and earlier bounds. In particular, successive conditioning
together with Assumption 2 imply that for (u,v) = (1,1) and (2, 2),

E([Vi-1ya, — Viakna,?) < A%

E.3.4 Proof of Equation (E.36) for w =2

Our aim here is to show that

N 1 [T/An] f2ka1 g 2k —mel
E(2):—A1 7 > (Z (ﬁ > [(athaabG)(c;Lj_m_l)—(athaa,,G)(cy_%n)}a(u)gg(v)g+m)><
n i=2k,, m=1 n 7=0

<<u)?€2> ()P = 0.

For this purpose, we introduce some new notation. For any 0 < m < 2k, — 1, set

2k, —m—1
i,mn 3 K n . . .
@(u) U)gr?)’ = % Z [(athaabG) (Ci—j—m—l) - (athaabG) (Ci_an)] E(U)J E(’U)j-'r'ln
_ 2k, —1 '
plous )t = 37 O )W)
m=1
It is easy to see that O(u, v)\""™ is " | measurable and satisfies, by Hélder inequality,

O, 0){

<Xi, and E(|0(uw, o) Fy, ) < KAL)

Lemma B3 implies that for ¢ > 2,

1/4%, 2 . .
B(p(u, o) @imatjn) < {Ka B X0 R itu=1 K/ ifv=1 (E.41)
’ T\ K (A AR )RR ifu=2 T | Kk ifv=2
Set
~ LY _ .
BO) = 2 ol o) RGN FLL),
n o =2k,
R [T/An] | ) )
B'(2) = 3 el o) OSmIhC0) ~ BOw) IR,
n i=2kn,
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The martingale increments property implies E(|E” 2)%) < K A? in all the cases, which in turn implies
E"(2) = 0. Next, using the bounds on p(u, v)(©@)4m9% e obtain that E’(2) = 0.

We refer to Jacod and Rosenbaum (2015) for the proofs of Lemma B1 and Lemma B2.

E.4 Proof of Lemma B3
Set

& =gl & =EGIF) = Blelo i) = @i B FL), and &7 =€ =&
Given that |[E(¢F )|l < L', we have ||€"| < L'|¢? ,|. By the convexity of the function #¢, which holds
for ¢ > 2, we have

2k, —1 2k, —1 2k, —1

B> gl < k(1Y nlr+ 1 Y &nl?).
j=1 j=1

Therefore, on the one hand we have

2k, —1 2k, —1 2k, —1

1> &l < KRS DTG 19 < KRETILT Y kY
j=1 j=1 j=1

which by E( ) < L4, satisfies
2k, —1 2k, —1
E(]l Z GlFL) < KL > B(|@fy |71 Fy) < KLELLY.
Jj=1

On the other hand, we have E(||&,7,[|7F7,) < E(|€8,;]19/F7,) < LeL? and E(&7,|F,) = 0, where the

first inequality is a consequence of IE(||§H_J|| \Fity) < E(IE8 191 Fy) < LgL?, which follows from the
Jensen’s inequality and the law of iterated expectation. Hence, by Lemma B.2 of Ait-Sahalia and Jacod
(2014) we have

2k, —1
E(| Z EIFT ) < K LILkY/?.

To see the latter, we first prove that the required condition E(||]|?|F/*,) < LyL%) in the Lemma B.2 of
Ait-Sahalia and Jacod (2014) can be replaced by E(||&/ ;[|9[F/L) < LgL?) for 1 < j < 2k, — 1 without
altering the result.

E.5 Proof of Lemma B4

We use the terminology “successive conditioning” to refer to either of the following two equalities,

T1Y1 — ToYo zo(y1 — yo) + Yo(x1 — o) + (21 — 20)(¥1 — Y0),
T1y121 — ToYozo = ToYo(z1 — 20) + To20(y1 — Yo) + Yozo(z1 — 20) + o (Yo — Y1) (20 — 21)
+yo(ro — x1)(20 — 21) + 20(x0 — 1) (Yo — y1) + (1 — 20)(y1 — Y0)(21 — 20),

which hold for any real numbers x, yo, 20, xl, Y1, and 21

To prove Lemma B4, we first note that A™/* ™™ g T op,, -measurable. Therefore, by the law of iterated
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expectations, we have

n,jkyn,lmyn,gh n,ab ny\ __ n,jkyn,lm n,gh n,ab n n
E(/\z )‘z )‘i+2k”)‘i+2k" ‘7:1' ) - E<>‘z /\z E(/\i+2kn>‘i+2kn i+2kn>|‘7:i )

By equation (3.27) in Jacod and Rosenbaum (2015), we have

n,gh n,ab n 2 n,ga n,hb n,gb n,ha 2knAnfn,gh,ab
‘E()‘i+2kn )‘i+2kn i+2kn) - k_i(oi-i-mcn Ci+2kn + Ci+2kn Ci+2kn) - 3 Ci+2kn ‘
n

< K\/Ain(A}/S + Ni't ok, 2k, )s and

. 2 . .
BN TED) — (e et o et

? kn ? (2

2/{:7 A —n,jk,lm n
B #Oi T < KA (A ).

From the above, it follows that

|E ()\;(L,jk:)\?,lm |:E(An,gh )\n,ab

2]€nAn —mn,gh,ab
i+2ky, “Vi+2kn,

2

n o n,ga n,hb n,gb n,ha o

ok,) . (Ciion, Citon, + Civor, Citor,) 3 Citon,
n

7))l

< VBBV I IAYS + 1 g, 0| FF) < KV ARAYSE(A N F7)

+ K+/ AnE(|/\?’jk|\A;L’lm|77?+2kn72kn| FI') < KA (AY® + Ni'ak,)s

where the last inequality follows from Lemma B1. -
Now, using equation (B.10) successively with Z = c and Z = C' (recall that the latter holds under Assumption
2), together with the successive conditioning, we also have

an An —n,gh,ab

2 7 "
3 Ci+2}c” — F(Cifb,gacin,hb + Cin,gbcin,ha)

n,jkyn,lm 2 n,ga n,hb n,gb n,ha
|E()‘z )\z |:/{3 (Ci+2kn Ci+2k71 + Ci+2kn Ci+2kn) +
n

2knAn% gh,ab
_ c.7
3 7

; 2
BTN [ (O et + oot

o)1= ot

anAnﬂ,gh,ab 2 n,jl ~m,km n,jm ~n,kl 2knAn*n7ijm
+ e ] [H(Ci e ]
2 2k, A, —n,gh,a
x [ (eroeptt  opstephey + ZREne | F) | < KAn(AYS + 0y,

The result derives from the last inequality.

E.5.1 Proof of Equation (B.12) in Lemma B5

We start by obtaining some useful bounds for some important quantities. First, using the second statement
in Lemma B2 applied to Z =Y”, we have

E(a ¥ FM| < KA (VA +ni). (E.42)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last
statements in Lemma B2 as well as equation (B.10) with Z = ¢, it can be shown that

E(aj a1 F) - A2 (Cprtept 4 oot )| < KAy, (E.43)
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Next, by successive conditioning and using the bound in equation (B.10) for Z = ¢ as well as equations
(E.42) and (E.43), we have for 0 <u <k, —

gk 3/2
’ z+]u ‘]:n < KA / r + nl u (E.44)
n,jk n,m 2 n,jl ~n,km n,jm ~mn,kl 5/2
(Bl - a2 (cpreptn 4 opimert) | < KAy, (E.45)
To show equation (B.12), we first observe that »/"/*1/"!"1/9" can be decomposed as
1 kn—1 kn—2 knp,—1
njk n,lm ngh n]k n,lm ngh njk n,lm ngh n,gh ~n,jk ~n,Im
v v k‘3A3 ZC zu Czu k‘3A3 Z Z [zu ©,v zv +C sz sz
n u=0 n u=0 v=u+1
n,lm ~n,gh ~n,jk ,]k n,m n ,gh n,gh ~n,jk ~n,lm n,Im ~n,gh ~n,jk
+ Ci,u C’i,v Ci,v :| ]i}3 AS Z Z 7,u z u 7, v + Ci,u Cz u Cz v + C Cz,u Ci,v :|
u=0 v=u+1

kn—3 kn—2 kn,—1
,]k nlm n,gh n,jk ~n,gh ~n,lm n,tm ~n,jk ~n,gh n,lm ~n,gh ~n,jk
kg Ag Z Z Z [ 7, z , z , W + Ci,u Cz K C’L w + Ci,u Ci,v Ci,w + Cl u Cz,v Ci,w

u=0 v=u+1w=v+1
sgh sl Jk h pn,jk ~n,l
GGG+ roheraienir],
with (7', = oy, + (O, — C')A,, which satisfies E(||¢7, [|1[F]") < KA{ for ¢ > 2.
Set

=2 kn—

é‘n _ k3A3 Z ank n,lm ;&gh; é-n _ k3A3 Z Z Cn]k n,lm z;}gh

n u=0 v=u+1

-2 kn—1 kn—3 kn—2 kn—1
n _ ,jk n, l7n n,gh ,Jk n,lm n,gh
£ k3A3 E : E : Czu i ’L’U and 6 k‘SAS E: E : § : Czu @0 zw .
u=0 v=u+1 u=0 v=u+1w=v+1

The following bounds can be established,

IE(& (DIF)] < KA, (E.46)
B (2)F)] < KA, (E.47)
IE(E (3)IF) < KA, (E.48)
B (1F)] < KAYHAY + nik,). (E.49)

E.5.2 Proof of Equation (E.46)

The result readily follows from an application of the Cauchy Schwartz inequality coupled with the bound
E([[¢ull9F7) < KqAf for ¢ > 2.

E.5.3 Proof of Equation (E.47)
Using the law of iterated expectation, we have, for u < v,
gk m,l h gk Im ~n,gh
E(Czn+Ju Czn—&-zjn zn—&-g) |]:n) = (C@+Ju ]E( :L+1jn z-l—% | itu+1 |-an) (E50)
By successive conditioning, equation (E.43), and the Cauchy-Schwartz inequality, we also have
l h 1 h lh
B G ) — DO ORIt + O\ CL)

n,gh n,gh n,lm n,lm
- Ai(cﬂiﬂ - )(C¢+u+1 - < KA?/Q-
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Given that E(| Z_{f|q|}'{‘) < A% the approximation error involved in replacing E(CZ_T(&%ﬂ T ug1) by
A2(Clle et ot e ) + A2 (CRIR L — oMy (Oim L — ¢ in equation (E.50) is smaller
than AZL/ 2

We can also easily show that

n,jk ( ~m,lm n,lm n n
B}y (Ol — CRMIFD| < KAV (VB 40, (E.51)
Since (C7,, — C}') is F}', ,-measurable, we use the successive conditioning, the Cauchy-Schwartz inequality,

equation (E.42), equation (E.43), and the fifth statement in Lemma B2 applied to Z = ¢ to obtain

[E(af 98 (CH — CRM(CR2F — CRIRFM] < KA
E(alfralm(Cral — e FM| < KAY? (E.52)
(O™ — emimyertF — oty el — eI F] < KA,

The following inequalities can be established using equation (E.42), the successive conditioning together with
equation (B.10) for Z = ¢,

n,jk n,lg n,mh n,lh n,mg 3/2

‘E(aiJru (Ci+u+lci+u+1 + Ci+u+1ci+u+1)|]:in)‘ S KAn/

n,jk n,jk n,lg n,mh n,lh n,mg n 1/2
’E<(Cz+u - Cz )(Ci+u+1 ifu+1 + Ci+u+1ci+u+1) |fz ) < KAn/

< KAYA(VAL 407

Jk .gh ,gh ) 1
B (Crslyy = oM (Clim, = O IF)

The last three inequalities together yield |E(&](2)|F)| < KA,.

E.5.4 Proof of Equation (E.48)
First, note that, for u < v, we have
Jk ndm n,gh| n gk n,im ,gh| n
E(G G Gl 1) = E(C Gl B | F ) | FE)- (E.53)
By successive conditioning and equation (E.42), we have
B0 | F o)l < KAV (VA0 + Migos1,0-0)- (E.54)
Using the first statement of Lemma applied to Z = ¢, it can be shown that

E((C12 — Ol ONIF!) = An(w — v — 1)b590

g K(’LU —U— 1)An77i+'u+1,w7v S KAyll/277i+v+1,w7v-

The last two inequalities together imply

n,gh| n ,gh ,gh “n,gh Ve
‘E<szk€u i+v+1) - (CZL+€;+1 - Cz'n g )An - Ai(w —v = 1)b?+%+1‘ < KA?z/Q( An + 77i+v+1,w—v)~ (E'55)

Since E(|¢]/*|9|F7) < A4, the error induced by replacing E(¢/3"|Fr,, 1) by (C19) —Cl ") A + A2 (w—
v— 1)b?_;fi}}:_1 in equation (E.53) is smaller that NG

Using Cauchy Schwartz inequality, successive conditioning, equation (E.52), equation (B.10) for Z = ¢ and
the boundedness of b; and C; we obtain

n,jk _mn,m/~n,jk n,gh n 5/2
‘]E<ai+u Qi (Cz'+u+1 -C; )|]:z'+u> < KA
n,jk _n,Im73n,gh n 2
’E(ai+u Qi bi+u+1|]:z'+u> < KA
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n,jk

[E(agt ot — opimyenst, — opmIE)| < KAV (VAL )
n,jk n,lm n, l771 11 h 71
’E<ai+Ju (City — G z+£;+1 ) < Ay
B((Cral - opomertr - ertmst 1 F)| < KAy
n,jk n,jk n,lm n,lm n,gh n, ll n

[B((Crl = cpyertr — ety Crlyy - CrIFED)| < KA,
The above inequalities together yield [E(£]"(3)|F/)| < KA.
E.5.5 Proof of Equation (E.49)
We first observe that £'(4) can be rewritten as

kn—1lw—1v—1
n Jk 71 l771 ,gh
5( = 3222@2 i+v z-‘ri}’
w=2 v=0 u=0
where
ARG = |l ol ol ah 4 ol AT (O — OIR) 4+ ol A (O — C7 ™)
n,jk n,lm n,lm n,gh n,gh n,jk n,jky _n,m n,gh
+A$L H—Ju (CH-'U - C )(Cz—&-gu - Cz 9 )+A (Cz-l-]u - Cz 7 )ai+v ai—i-gw
n,jk n,jk\ n,m n,gh n,gh n,jk n,jk n,lm n,lmy n,gh

+A2 (CH-Ju Cv ! ) 7+u (Cl—Q—%z Cv g )+A2 (CH-ju Cl ’ )(CZ+U Cz )ai-&-!iu

+ANCTAS - O - ey - e |
Based on the above decomposition, we set

8
= x(),
j=1

with x(j) defined below. We aim to show that [E(x(j)|F")| < KA3/4(A1/4 + 0y, ) d=1,....8.

First, set

kn—lw—1v—1

D IPIPI

w=2 v=0 u=0

X(]- - +u l-‘r’U

Upon changing the order of the summation, we have

1 kn—1w—1
W= Gay 2, 2 s

(za

n,jk
1+u

n,lm
7,+v

)

Define also

(S

u=0

n,jk n,lm
1+u H—v E

Jo

P ‘
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n,gh
z+w

ngk n,lm n,gh
H—w

n,gh
1+w

| in+v+1)'

n,gh
1+w



Note that E(x(1)|F) = E(x'(1)|F).
By Lemma B3, we have for ¢ > 2,

v—1

i

E(H Z Qv
u=0

The Cauchy-Schwartz inequality yields

( ) 1(Z%’iﬁ“)

w=2 v=0 u=0

% [E(|a

l
i, Ela

n,lm
1+v

h
?+gw | z+'u+1) )

fi”)TM x {E(‘E(a

where the last iteration is obtained using equation (E.54) as well as the inequality (a + b)'/? < a'/2 4 b1/

gk

q‘]:i") < K A3/4,

v—1
}'i"> < Kk? [IE(‘ S apk
u=0

1+w

D%

F ) [F)] T < KA AYIAY2 (/A 4 ),

which holds for positive real numbers a and b, and the third statement in Lemma B1. It follows that

E(X(l

Next, we introduce

kp—1w—1 wv-—1
Jk Jk N/ ,gh
X(2) = (kn, A (e A3 Z Z (ZA (€ =G ))0‘?+1:n04?+€1;,
w=2 v=0 u=0
kn—1lw—1 ov—1
n,jk l N ,gh
X(3 k A T A3 Z Z (Zal-‘rjv) C:l-&-?:n Czn m)a?_‘i”
w=2 v=0 u=0
kn—1lw—1 ov—1
\Jk Jk l N}
W = i 2 3 (A — e ) e - o'
w=2 v=0 u=0

Given that for ¢ > 2, we have

v—1
(| S

Similar steps to x(1) lead to

n]k ,]k‘
4w _C

H ’]—"”) < K,A3/4 and E(|C77F -

JIF)| < KA/ B+,

+u

n,gh
4w *

CR||F7) < KAy

for j=3,4.

cpen)

2)|F)| < KAYA(VAn iy, and [EQGF] < KA An +117,)
Define
kpn—1lw—1 wv-—1 )
X6) = Gy 2 2 (Dot e anCry - e
w=2 v=0 u=0
kn—1lw—1 v-—1
n,jk n,lm n,gh n, h
X/(5 3 Z Z (Zaz-&-ju) z+v A ]E((CH%J C J | 1+v+1
w=2 v=0 u=0
kn—lw—1 wv-—1
n,jk n,jk n,m n,gh
X(G knAn A )3 Z Z (ZA CH-ju C? ! )) z+v A (Cz+€1;
w=2 v=0 u=0
kn—1lw—1 wv-—1
gk n,lm n,lm n,gh
x(7) = (kn A (e A3 Z Z (Za#ﬂ) (CI" = O M)A (G —

w=2 v=0

u=0
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where we have E(x(5)|F*) = E(x/(5)|F). Recalling equation (E.55), we further decompose x'(5) as,

5
= x()[j]

Jj=1

with

—1lw-1

VO =G5 Z > (Zazﬁf) o (B(Crs = P F)

<c:‘+)zﬁ1—crﬁghm B AL w0 - 1)

kn—1lw-—1
n,gh n,h n,jk n,lm
X’(5)2 (k‘ A )3 Z ZA Cz—i—% Cz J (Zaz+ju) z+v
w=2 v=0
kpn—1lw—-1 ov-—1

O3 =g 2 3 (3 el MOl - oy
ne=mn w=2 v=0 wu=0

kn—1lw—1 v-—1
n,lm

X/(5)[4] = (knin) Z Z (Z az—‘fj) AQ —v—= 1)(b?—ﬂ)h+1 - b?—&-gvh)ai—:—v

w=2 v=0 u=0

kn—1lw-—1 v—1 ‘
e D TR o wit tis
n=n w=2 v=0 u=0

Using equations (E.55), (E.54), and (E.51) and following the same strategy proof as for x(1), it can be shown

that
IE(XI(5)[j]|f?)| < KA VA, +0fy,), for j=1,...,5,

which in turn implies
E(x(5)| 7 )| < KAYA(V/Ay + 0, for j=1,....5.
The term x(6) can be handled similarly to x(5), hence we conclude that

E(x(©0)|F7) < KAY (VAL + i)

Next, we set

kn—1 fw—1 wv-—1
1 X n,j n,lm n,lm n n
x(7) = m Z (Z (Zaiﬁf)An(Oi#i) -G ! )An(ci-ilﬂl -G ’gh)>-
nen w=2 v=0 u=0
Define
1 kn—1 w—1 ov—1
X(M[] = (kn )3 ( (Za;’ﬁf)An(C:ﬂUm CI™M AL (Cl8l ) — Cﬁ?ﬁ))
n=n w=2 v=0 u=0
1 kn—1 w—1 wv—1
A R W (Z (Y ai)an(Crsy - ermaucs - c;“g%)
n=mn w=2 v=0 wu=0
1 kn—1 w—1 wv—1
XM = Gz ( (S ar)an(err - oAz w — v - )@, - blff))
n=mn w=2 v=0 wu=0
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kn—1 fw-1
XM= i 2 (me—v bmﬁ(zasz) (i - c;’*“'w).

w=2 v=0 u=0

It is easy to see that

Similarly to calculations used for x(1), it can be shown that
E(DUF < KA/ AV +mig,), for j=1,...,3.

To handle the remaining term x(7)[4], we decompose it x(7)[4] = 2?21 x(7)[4][j], where

kpn—1lw—1v-—1
n k nlm n,lm n,gh n,gh
x(7)4][1] = 3 Z Z Zaz-‘rJu itut1 — Cifu )(Ci+i+1 *CZ-FZ )
w=2 v=0 u=0
kn—1lw—1v—1
n,gh n,gh Jk n,lm n,lm
X(7)[4H2 k‘ A 7. A \3 Z Z Z Cz—&-!i Cz 7 ) z+ju (Cz+u+1 Cz-i—u )
w=2 v=0 u=0
kp—1w—1v-—1
n,gh n,gh gk n,lm n,lm n
X/(7)[4][ k A Z Z Z Cz+£; C’L 9 ) ( 2+Ju (Cz+u+1 Cz+u )|~Fz+u)
n n w=2 v=0 u=0
kn—lw—1v-—1
n,lm n,lm Jk ~m,gh n,gh
X(7)[4][3 k A 7. A \3 Z Z Z CH-U CZ ) H—ju (Cz—i-i—i-l - Cz+% )
w=2 v=0 u=0
kpn—1lw—1v—1
n,lm n,lm n,gh n,ghy\ n,jk
X(7)[4][ = 3 Z Z Z CH—U C )(Cz+€l C’L g )ai+ju
w=2 v=0 u=0
kn—1lw—1v—1
n,lm n,lm gk n,gh n,gh
X<7)[4][5 k A 3 Z Z Z Cz+u Cz ) 1+]u (Cz+€) CerZH»l)
w=2 v=0 u=0
—1lw—-1v-1
n,lm n,lmy _n,jk n,gh n,gh n
X/(7)[2][5 k A 3 Z Z Z Ceru Cz ) z+]u ]E((Cer% Cz+£7]1+1|fi+u)
w=2 v=0 u=0
kn—1lw—1v—1
n, k ok l l n,gh ,gh
X(MMIB] = 7358 D> Al (Ol — OGRS = Ol
w=2 v=0 u=0
kn—1lw—1v—1

x(7)[4][7] = 3 Z Z Z CZLJrZh Cz‘mgh) :L+Jj(czl+lqzm C:LJrquH)
w=2 v=0 u=0
—lw—1v-—1
X(DUIE = 35 Z DD alpi(Cl — GO = G

w=2 v=0 u=0
kpn—1lw—1v—1

X(7)[4][9] = Z SO arirerit —orin ) (Crat - sty

w=2 v=0 u=0

Using arguments similar to those involved for the treatment of x(1), it can be shown that
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which yields
DIFO < KA/ A + mi,)-
Next, define

kn—lw—1v—1

X) = 1 D0 S0 SO Cr R — (g - O,

" w=2 v=0 u=0

This term can be further decomposed into six components. Successive conditioning and existing bounds give

E((C12F = e M) (O = Clm(Cln = Ch| F )| < KA,

E((CRAF = OO = (O = O F )| < KAYHAY + i)
E((Crak = CraM)(Crir = (el = O 7 )| < KA

E((Crf - crMy et - ermy e - e Fr) | < KA

B((Craf — ey — e - th)!ff)wf

E((CRf - e et - ermy et - o) | < KA

These bounds can be used to deduce
8)|F| < KA,.
This completes the proof.

E.5.6 Proof of Equations (B.13) and (B.14) in Lemma B5
Observe that

,Jk(cn Jm C:z,lm)(C:LJ;%h Cn gh k A Z CZ jk Cm Jm Cn lm)(cn ,gh C«;L,gh)7

v; i+kn 7 i+kn i+kn

kn—1
n,jk_n,Im n,gh n,ghy __ 1 ,jk nlm ngh n,gh
vyt v (CiJrk,,L - = LZA2 E Cz u 7, u z+k" - )
n=—n
kn—2kn—1 kn—2kn—1
,jk n, lm n ,gh n gh n lm ,]k n ,gh n,gh
k2A2 E: 2 :C zv z+k _OZ kQAQ 2: E:C Z’U H—k:n_ci )

u=0 v=0 u=0 v=0

Hence, equations (B.13) and (B.14) can be proved using the same strategy as for (B.12).

E.5.7 Proof of Equations (B.15) and (B.16) in Lemma B5
Note that we have

)\Tl,jk)\ﬂ,lm mgh n,gh_n,jk nlm+ n,gh ’ﬂ,]k nlm_y n,gh_ n,m_n,jk ,ghyn lm_n,jk
i

1/2 Vitk Vitk, v; v; 4 v’ itk, — Vi 4 it+kn

n,gh n,gk n,lm n,lm n,gh n,jk n,lm n,lm n gh n,lm n,jk n,jk
+u T (O, = O — v (G — O + v (G, — )

h n,l ik ik ,gh ik k l 1
=y (O — O v O — O (G = O,
and

n,ghy\n,jk n,lmi n,gh  n,jk _n,lm n,gh n,]k n,lm n,gh n,0m_n,jk n,gh _n,0m_n,jk
AT VitknVitknVitkn T Vitka Vi~ Vi " Vigk, Vi Vitkn, ~ VitkoVi  Vitky
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n,gh n,jk (Cn Jm Cn,lm) l/n ,gh n,;k(Cn JAm Cm,lm) n,gh n,lm( n,jk Cn,jk)
. . i

Vit (G, itk ik VitknYitha \Citk,
VP O = OF )+ (CIE — OPC - o)

o VTR Ry
- ghvli”;f (CZ’;%T = ) (O = O = T (Ol = 68T)
S (e ey B 7 (e e [( e iR ey

n,jk nlm n,gh _ ~m,gh n,jk_ n,Im n,gh _ ~m,ghy n,lm_mn,jk n,gh _ ~m,gh
TV Vit (Citgen — CF) 0y (O — CF9%) — vyl (G — CF97)

_pywlm, gk (C%gh _ Cﬂ,gh) Ik (C«mlm _ C%ZM)(C«n,gh _ Cﬂ"’gh)

% itkn \itky itk \itky i+ky
ik l 1 Jgh ,gh l jk ik .gh ,gh
JT(Cl = GG — O v (O, — GG, — C0)
| n,jk n,jk gh .gh n,jk n,jk 1 ) .gh .gh
*V? O, — CHINCHR, — ) + (G, — GGy = G O)(Cg, = G ).

From (A.4), notice that v} is 7', -measurable and satisfies [|[E(v]'|F]")[| < KAY?
The law of iterated expectations and existing bounds imply

B I FDL < KA
Bl \F < KA,
E n,lm n,gh Cn’gh n,jk ]:n < KA
[E(v; (i+kn_ i )1+k|z)| > ns
[E@ (Ol —CpifFn < KAy,
n,jk n,jk n,m n,lm n,gh n,gh
E((Ci, — CH7NCH = G NCHE, — CHIMIFN < KA, (E.56)
It can also be readily verified that
k‘ A —n,gh,ab
n,gh nab n,ga ~mn,hb n,gb ~n,ha nen sgh,
UE( Hf;c Vitk, 1+kn) (Cz+$l7€ Cerk Cergc Cerk )_ TCiJrkn |

< KVAL(AYE + 77?+kn,kn)-

b (ymah cmgh o™ty which satisfies B(|o9" 9| Fr) < KAY* and E(o7"|Fr) <

Hence, for ¢." e

K A:/ . One can show that

knlp —n,jk,lm
s h gk l ,gh gl k , kl IR,
B v v ) — (el [ (Ol Ol + Clnerit) - 22 e i)

3/40A1/4
Next, by combining the successive conditioning together with existing bounds, we have

Bl Tl ™ < KAYAHAY )

[E(p ool e < KAY?,

which together imply
B (o7 e v | FO] < KA (A + 0, (E.57)

It is easy to see that equations (B.12), (E.56) and (E.57) and the inequality n;', < m'y, = together yield
equations (B.15) and (B.16).
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E.6 Proof of Lemma B6

Equation (B.17) can be proved easily using the bounds of p(u, v
(B.18), (B.19) and (B.20), we set

)9 in equation (E.41). To show equations

(T/Aq]
All(Hv ghau; G,abm) = )\(U,U)g Z (athaabG>(Cifl)éh(u)?’ghC(’U)?’ab.
i=2kn
Then,
—_— P
NG <A11(H gh,u; G, ab,v) — ATL(H, gh, u; G, ab v)) Zo.
The above result is proved following similar steps as for equation (E.35) in case w = 1 by replacing

O(u, v)éc)’l’n by A(u, )5 ((OgnHOubG)(Ci—1) — (OgnHOubG)(Ci—2k,)), which has the same bounds as the

former. Next, decompose A1l as follows,

o [T/A]
M(H,gh,u;G,abvv)=/\(u,v)gl > (O HOwG)(Cim1) V™,
i=2ky
(T/An] . ,
+ > O HOwG)(Cimt) (E(C() ")) 1 Fy) = Vi)
=2k,
(T/An]
+ Y O HOWG)(Cimn) (S ) = B ¢(0)] |7, 0)]
=2k,

We follow the proof of equation (E.36) for w = 1, and we replace O (u, )5 by A, 0)8 (Ogn HOaG)(Ci—1),
which satisfies only the condition |A(u,v)§(9gnHO0aG)(Ci—1)| < A" . This calculation shows that the last

u,v "

two terms in the above decomposition vanish at a rate faster than An/ . Therefore,

1/4
n

- /8]
<A11(H, gh,u; G, ab,v) — )\(u,v)g( 3" (0 HOwG)(Cimt) Vi 1)) = 0.

1=2ky,

As a consequence, for (u,v) = (1,2) and (2, 1),

A1/4T(H ,gh,u; G,ab,v) =

The results follow from the following observation,

d [T/AR]

A}/( ( Z Z (OgnHOuG)(Csi— )Viril(uvv))

g,h,a,b=1 i=2k,,

T
_9%/ (3th3abG)(Ct)(Cf“Cfb+Cbeth“)dt> =0, for (u,0) = (2,2),
0

(T/An]
1/4 ( Z )\ U U ( Z (athaabG)(Cifl)Vvizl(u7v)) - [H(C)7 G(C)}T> = 07

g,h,a,b=1 =2k,
fOI‘ ( u, ) - (151)
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Figure F.1: Monthly R? of two Return Factor Models (}AE%- ;)7 the CAPM (the blue dotted line) and the
Fama-French three factor model (the red solid line). Stocks are represented by tickers (see Table 1 for full
stock names).
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Figure F.2: Monthly R? of two Return Factor Models (ﬁij) the CAPM (the blue dotted line) and the
Fama-French three factor model (the red solid line). Stocks are represented by tickers (see Table 1 for full
stock names).
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Figure F.3: Correlations between total and residual IdioVols: (a) Corr(Cz;,Cz;), (b) Corr(C}efid,C’%Sid)

with one volatility factor, the market variance, (c) Corr(C3E5, Cg‘}Sid) with ten volatility factors, the market
variance and the variances of nine industry ETFs.
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