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Abstract

This paper introduces an econometric framework for analyzing cross-sectional dependence

in the idiosyncratic volatilities of assets using high frequency data. We first consider the estima-

tion of standard measures of dependence in the idiosyncratic volatilities such as covariances and

correlations. Naive estimators of these measures are biased due to the use of the error-laden

estimates of idiosyncratic volatilities. We provide bias-corrected estimators and the relevant

asymptotic theory. Next, we introduce an idiosyncratic volatility factor model, in which we

decompose the variation in idiosyncratic volatilities into two parts: the variation related to the

systematic factors such as the market volatility, and the residual variation. Again, naive estima-

tors of the decomposition are biased, and we provide bias-corrected estimators. We also provide

the asymptotic theory that allows us to test whether the residual (non-systematic) components

of the idiosyncratic volatilities exhibit cross-sectional dependence. We apply our methodol-

ogy to the 30 Dow Jones Industrial Average components, and document strong cross-sectional

dependence in their idiosyncratic volatilities. We consider two different sets of idiosyncratic

volatility factors. We find that a single market volatility factor cannot fully account for the

cross-sectional dependence in idiosyncratic volatilities, while this conclusion is reversed with

additional industry volatility factors. For each model, we map out the network of dependencies

in residual (non-systematic) idiosyncratic volatilities across all stocks.
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high frequency data.
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1 Introduction

In a panel of assets, returns are generally cross-sectionally dependent. This dependence is usually

modelled using the exposure of assets to some common return factors, such as the Fama-French fac-

tors. In this Return Factor Model (R-FM), the total volatility of an asset return can be decomposed

into two parts: a component due to the exposure to the common return factors (the systematic

volatility), and a residual component termed the Idiosyncratic Volatility (IdioVol). These two

components of the volatility of returns are the most popular measures of the systematic risk and

idiosyncratic risk of an asset.

Idiosyncratic Volatility is important in economics and finance for several reasons. For example,

when arbitrageurs exploit the mispricing of an individual asset, they are exposed to the idiosyn-

cratic risk of the asset and not the systematic risk (see, e.g., Campbell, Lettau, Malkiel, and Xu

(2001)).1 Also, Idiosyncratic Volatility measures the exposure to the idiosyncratic risk in imper-

fectly diversified portfolios. The attention to IdioVols in empirical finance literature is exemplified

by two IdioVol puzzles, started by Campbell, Lettau, Malkiel, and Xu (2001) and Ang, Hodrick,

Xing, and Zhang (2006), each associated with its own follow-up literature. A recent observation is

that the IdioVols seem to be strongly correlated in the cross-section of stocks, see, e.g., Connor, Ko-

rajczyk, and Linton (2006), Duarte, Kamara, Siegel, and Sun (2014), Herskovic, Kelly, Lustig, and

Nieuwerburgh (2016), and Christoffersen, Fournier, and Jacobs (2018). Herskovic, Kelly, Lustig,

and Nieuwerburgh (2016) argue this is due to a common IdioVol factor, which they relate to house-

hold risk. We note that the cross-sectional dependence in IdioVols is also important for option

pricing, see Gourier (2016).

This paper provides an econometric framework for studying the cross-sectional dependence in

the Idiosyncratic Volatilities using high frequency data. We show that naive estimators, such as

covariances and correlations of estimated IdioVols used by several empirical studies, are substan-

tially biased. The bias arises due to the use of error-laden estimates of IdioVols. We provide the

bias-corrected estimators.

To study Idiosyncratic Volatilities, we introduce the Idiosyncratic Volatility Factor Model

(IdioVol-FM). Just like a Return Factor Model, R-FM, such as the Fama-French model, decomposes

returns into common and idiosyncratic returns, the IdioVol-FM decomposes the IdioVols into sys-

1A stock is said to be mispriced with respect to a given model if the expected value of the return on the stock is
not consistent with the model.
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tematic and residual (non-systematic) components. The IdioVol factors may or may not be related

to the return factors. The IdioVol factors can include the volatility of the return factors, or, more

generally, (possibly non-linear) transformations of the spot covariance matrices of any observable

variables, such as the average variance and average correlation factors of Chen and Petkova (2012).

We propose bias-corrected estimators of the components of the IdioVol-FM model.

We provide the asymptotic theory for this model. For example, it allows us to test whether

the residual (non-systematic) components of the IdioVols exhibit cross-sectional dependence. This

allows us to identify the network of dependencies in the residual IdioVols across stocks.

Our bias-corrected estimators and inference results are an application of a new asymptotic

theory that we develop for general estimators of quadratic covariation of vector-valued transforma-

tions of spot covariance matrices. This theoretical contribution is of its own interest. An example

of alternative applications is the study of cross-sectional dependence of asset betas. Two features

make the development of this asymptotic theory difficult. First, preliminary estimation of volatility

results in first-order biases even in the special case of quadratic variation of the volatility one stock

without any transformations, as in Vetter (2015). Second, we consider general nonlinear functionals

in multivariate settings, which substantially complicates the analysis.

Throughout the paper, we use factors that are specified by the researcher. An example of our

Return Factor Model is the so-called Fama-French factor model, which has three observable factors,

or the CAPM, which has one observable factor (the market portfolio return). An example of our

IdioVol factors is the market volatility, which can be estimated from the market index. Thus, our

setup is different from settings such as PCA where factors are identified from the cross-section of

the assets studied. The treatment of the latter case adds an additional layer of complexity to the

model and is beyond the scope of the current paper.

We apply our methodology to high-frequency data on the 30 Dow Jones Industrial Average

components. We study the IdioVols with respect to two models for asset returns: the CAPM and

the three-factor Fama-French model.2 In both cases, the average pairwise correlation between the

IdioVols is high (0.55). We verify that this dependence cannot be explained by the missing return

factors. This confirms the recent findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016)

who use low frequency (daily and monthly) return data. We then consider the IdioVol-FM. We

use two sets of IdioVol factors: the market volatility alone and the market volatility together with

volatilities of nine industry ETFs. With the market volatility as the only IdioVol factor, the average

2The high frequency Fama-French factors are provided by Aı̈t-Sahalia, Kalnina, and Xiu (2020).
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pairwise correlation between residual (non-systematic) IdioVols is substantially lower (0.25) than

between the total IdioVols. We find that a single market volatility factor is not able to fully explain

the cross-sectional dependence in IdioVols, while this conclusion is reversed for the richer IdioVol-

FM with industry volatility factors. For each model, we map out the network of dependencies in

residual IdioVols across all stocks.

This paper analyzes cross-sectional dependence in Idiosyncratic Volatilities. This should not

be confused with the analysis of cross-sectional dependence in total and idiosyncratic returns. A

growing number of papers study the latter question using high frequency data. These date back

to the analysis of realized covariances and their transformations, see, e.g., Barndorff-Nielsen and

Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu (2006). A continuous-time factor

model for asset returns with observable return factors was first studied in Mykland and Zhang

(2006). Various return factor models with observable factors have been studied by, among others,

Bollerslev and Todorov (2010), Fan, Furger, and Xiu (2016), Li, Todorov, and Tauchen (2017a,b),

and Aı̈t-Sahalia, Kalnina, and Xiu (2020). Emerging literature also studies the cross-sectional

dependence in returns using high-frequency data and latent return factors, see Aı̈t-Sahalia and Xiu

(2019, 2017) and Pelger (2019, 2020). Importantly, the models in the above papers are silent on

the cross-sectional dependence structure in the IdioVols.

The Realized Beta GARCH model of Hansen, Lunde, and Voev (2014) imposes a structure on

the cross-sectional dependence in IdioVols. This structure is tightly linked with the Return Factor

Model parameters, whereas our stochastic volatility framework allows separate specification of the

return factors and the IdioVol factors.3

Our inference theory is related to several results in the existing literature. First, as mentioned

above, we generalize the result of Vetter (2015). Jacod and Rosenbaum (2013, 2015), Li, Todorov,

and Tauchen (2016) and Li, Liu, and Xiu (2019) estimate integrated functionals of volatilities, which

includes Idiosyncratic Volatilities. The latter problem is simpler than the problem of the current

paper in the sense that
√
n-consistent estimation is possible, and the estimators are consistent

without a bias correction (see Section 3.1 for details). In the literature on the estimation of the

leverage effect, preliminary estimation of volatility also creates a bias, which also needs to be

corrected to achieve consistency, see Aı̈t-Sahalia, Fan, and Li (2013), Aı̈t-Sahalia, Fan, Laeven,

Wang, and Yang (2017), Kalnina and Xiu (2017) and Wang and Mykland (2014). The biases due

3In the Beta GARCH model, the IdioVol of a stock is a product of its own (total) volatility, and one minus the
square of the correlation between the stock return and the market return.
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to preliminary estimation of volatility can be made theoretically negligible when an additional,

long-span, asymptotic approximation is used. This requires the assumption that the frequency of

observations is high enough compared to the time span, see, e.g., Corradi and Distaso (2006), Bandi

and Renò (2012), Li and Patton (2018), and Kanaya and Kristensen (2016).

In the empirical section, we define a network of dependencies using (functions of) quadratic

covariations of IdioVols. This approach can be compared with the network connectedness measures

of Diebold and Yilmaz (2014). The latter measures are based on forecast error variance decom-

positions from vector autoregressions. They capture co-movements in forecast errors. In contrast,

we assume a general semimartingale setting, and our framework captures realized co-movements in

Idiosyncratic Volatilities, while accounting for the measurement errors in these volatilities.

The remainder of the paper is organized as follows. Section 2 introduces the model and the

quantities of interest. Section 3 describes the identification and estimation. Section 4 presents the

asymptotic properties of our estimators. Section 5 uses high-frequency stock return data to study

the cross-sectional dependence in IdioVols using our framework. Section 6 contains Monte Carlo

simulations. The Appendix contains all proofs and additional figures.

2 Model and Quantities of Interest

We first describe a general Factor Model for the Returns (R-FM), which allows us to define the

Idiosyncratic Volatility. We then introduce the Idiosyncratic Volatility Factor Model (IdioVol-FM).

In this framework, we proceed to define the cross-sectional measures of dependence between the

total IdioVols, as well as the residual IdioVols, which take into account the dependence induced by

the IdioVol factors.

Suppose we have (log) prices on dS assets such as stocks, St = (S1,t, . . . , SdS ,t)
>, and on

dF observable factors, Ft = (F1,t, . . . , FdF ,t)
>. We stack them into the d-dimensional process

Yt = (S1,t, . . . , SdS ,t, F1,t, . . . , FdF ,t)
> where d = dS + dF . The observable factors F1, . . . FdF are

used in the R-FM model below. We assume that all observable variables jointly follow an Itô

semimartingale, i.e., Yt follows

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (1)

where W is a dW -dimensional Brownian motion (dW ≥ d), Ct = σtσ
>
t is the spot covariance process,
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and Jt denotes a finite variation jump process. The spot covariance matrix process Ct of Yt is a

continuous Itô semimartingale,4

Ct = C0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (2)

We refer to the (Ct)a,b element of the matrix Ct as Cab,t. For convenience, we also use the alternative

notation CUV,t to refer to the spot covariance between two elements U and V of Y , and CU,t to

refer to CUU,t.

We assume a standard continuous-time factor model for the asset returns.

Definition (Factor Model for Returns, R-FM). For all 0 ≤ t ≤ T and j = 1, . . . , dS,5

dSj,t = β>j,tdF
c
t + β̃>j,tdF

d
t + dZj,t with

[Zj , F ]t = 0.
(3)

In the above, dZj,t is the idiosyncratic return of stock j. The superscripts c and d indicate the

continuous and jump part of the processes, so that βj,t and β̃j,t are the continuous and jump factor

loadings. For example, the k-th component of βj,t corresponds to the time-varying loading of the

continuous part of the return on stock j to the continuous part of the return on the k-th factor.

We set βt = (β1,t, . . . , βdS ,t)
> and Zt = (Z1,t, . . . , ZdS ,t)

>.

We do not need the return factors Ft to be the same across assets to identify the model, but

without loss of generality, we keep this structure as it is standard in empirical finance. These

return factors are assumed to be observable, which is also standard. For example, in the empirical

application, we use two sets of return factors: the market portfolio and the three Fama-French

factors, which are constructed in Aı̈t-Sahalia, Kalnina, and Xiu (2020).

A continuous-time factor model for returns with observable factors was originally studied in

Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. A burgeoning

literature uses related models to study the cross-sectional dependence of total and/or idiosyncratic

4Note that assuming that Y and C are driven by the same dW -dimensional Brownian motion W is without loss
of generality provided that dW is large enough, see, e.g., equation (8.12) of Aı̈t-Sahalia and Jacod (2014).

5The quadratic covariation of two vector-valued Itô semimartingales X and Y , over the time span [0, T ], is defined
as

[X,Y ]T = p -lim
M→∞

M−1∑
s=0

(Xts+1 −Xts)(Yts+1 − Yts)>,

for any sequence t0 < t1 < . . . < tM = T with sup
s
{ts+1− ts} → 0 as M →∞, where p-lim stands for the probability

limit.
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returns. However, this literature does not consider the cross-sectional dependence in the IdioVols.

We define the idiosyncratic Volatility (IdioVol) to be the spot volatility of Zj,t and denote it

by CZj,t. Notice that R-FM in (3) implies that the factor loadings βt as well as the IdioVols are

functions of the total spot covariance matrix Ct. In particular, the vector of factor loadings satisfies

βjt = (CF,t)
−1CFSj,t, (4)

for j = 1, . . . , dS , where CF,t denotes the spot covariance matrix of the factors F , which is the lower

dF ×dF sub-matrix of Ct; and CFSj,t denotes the covariance of the factors and the jth stock, which

is a vector consisting of the last dF elements of the jth column of Ct. The IdioVol of stock j is then

also a function of the total spot covariance matrix Ct,

CZj,t︸ ︷︷ ︸
IdioVol of stock j

= CY j,t︸ ︷︷ ︸
total volatility of stock j

− (CFSj,t)
>(CF,t)

−1CFSj,t. (5)

By the Itô lemma, (4) and (5) imply that factor loadings and IdioVols are also Itô semimartingales

with characteristics that are functions of Ct.

We now introduce the Idiosyncratic Volatility Factor model (IdioVol-FM). In IdioVol-FM, the

cross-sectional dependence in the IdioVol shocks can be potentially explained by certain IdioVol

factors. We assume the IdioVol factors are given smooth functions of the matrix Ct. In the empirical

application, we use the market volatility as the IdioVol factor, which has been used in Herskovic,

Kelly, Lustig, and Nieuwerburgh (2016) and Gourier (2016); we discuss other possibilities below.

Definition (Idiosyncratic Volatility Factor Model, IdioVol-FM). For all 0 ≤ t ≤ T and

j = 1, . . . , dS, the Idiosyncratic Volatility CZj follows,

dCZj,t = γ>ZjdΠt + dCresidZj,t with (6)

[CresidZj ,Π]t = 0,

where Πt = (Π1t, . . . ,ΠdΠt) is a RdΠ-valued vector of IdioVol factors, which satisfy

Πkt = Πk(Ct) (7)

with the function Πk(·) being three times continuously differentiable for k = 1, . . . , dΠ.

We call the residual term CresidZj,t the residual IdioVol of asset j. Our assumptions imply that

7



the components of the IdioVol-FM, CZj,t,Πt and CresidZj,t , are continuous Itô semimartingales. We

remark that both the dependent variable and the regressors in our IdioVol-FM are not directly

observable and have to be estimated, and our asymptotic theory takes that into account. As will

see in Section 3, this preliminary estimation implies that the naive estimators of all the dependence

measures defined below are biased. One of the contributions of this paper is to quantify this bias

and provide the bias-corrected estimators for all the quantities of interest.

The class of IdioVol factors permitted by our theory is rather wide as it includes general non-

linear transforms of the spot covariance matrix process Ct. For example, IdioVol factors can be

linear combinations of the total volatilities of stocks, see, e.g., the average variance factor of Chen

and Petkova (2012). Other examples of IdioVol factors are linear combinations of the IdioVols, such

as the equally-weighted average of the IdioVols, which Herskovic, Kelly, Lustig, and Nieuwerburgh

(2016) denote by the “CIV”. The IdioVol factors can also be the volatilities of any other observable

processes.

Having specified our econometric framework, we now provide the definitions of some natural

measures of dependence for (residual) IdioVols. Their estimation is discussed in Section 3.

Before considering the effect of IdioVol factors by using the IdioVol-FM decomposition, one

may be interested in quantifying the dependence between the IdioVols of two stocks j and s.

A natural measure of dependence is the quadratic-covariation based correlation between the two

IdioVol processes over a given time period [0, T ],

Corr (CZj , CZs) =
[CZj , CZs]T√

[CZj , CZj ]T
√

[CZs, CZs]T
. (8)

Alternatively, one may consider the quadratic covariation [CZj , CZs]T without any normalization.

In Section 4.4, we use the estimator of the latter quantity to test for the presence of cross-sectional

dependence in IdioVols.

To measure the residual cross-sectional dependence between the IdioVols of two stocks after

accounting for the effect of the IdioVol factors, we use again the quadratic-covariation based corre-

lation,

Corr
(
CresidZj , CresidZs

)
=

[CresidZj , CresidZs ]T√
[CresidZj , CresidZj ]T

√
[CresidZs , CresidZs ]T

. (9)

In Section 4.4, we use the quadratic covariation between the two residual IdioVol processes
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[CresidZj , CresidZs ]T without normalization for testing purposes.

We want to capture how well the IdioVol factors explain the time variation of IdioVols of the

jth asset. For this purpose, we use the quadratic-covariation based analog of the coefficient of

determination. For j = 1, . . . , dS ,

R2,IdioVol-FM
Zj =

γ>Zj [Π,Π]TγZj

[CZj , CZj ]T
. (10)

It is interesting to compare the correlation measure between IdioVols in equation (8) with the

correlation between the residual parts of IdioVols in (9). We consider their difference,

Corr (CZj , CZs)− Corr
(
CresidZj , CresidZs

)
(11)

to see how much of the dependence between IdioVols can be attributed to the IdioVol factors.

In practice, if we compare assets that are known to have positive covolatilities (typically, stocks

have that property), another useful measure of the common part in the overall covariation between

IdioVols is the following quantity,

QIdioVol-FM
Zj,Zs =

γ>Zj [Π,Π]TγZs

[CZj , CZs]T
. (12)

This measure is bounded by 1 if the covariations between residual IdioVols are nonnegative and

smaller than the covariations between IdioVols, which is what we find for every pair in our empirical

application with high-frequency observations on stock returns.

We remark that our framework can be compared with the following null hypothesis studied in

Li, Todorov, and Tauchen (2016), H0 : CZj,t = aZj + γ>ZjΠt, 0 ≤ t ≤ T. This H0 implies that

the IdioVol is a deterministic function of the factors, which does not allow for an error term. In

particular, this null hypothesis implies R2,IdioVol-FM
Zj = 1.

3 Estimation

As we show below, the quantities of interest in Section 2 can be expressed in terms of quadratic

covariation between two functions of the spot covariance matrix Ct,

[H(C), G(C)]T . (13)
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Section 3.1 proposes estimators of this general functional, and Section 3.2 explains how to use these

formulas to obtain estimators of the quantities of interest in Section 2.

3.1 Estimation of a General Functional

This section proposes estimators of the quadratic covariation between two functions of the spot

covariance matrix [H(C), G(C)]T , where H and G are given real-valued smooth functions. Recall

that Ct is the spot covariance matrix of the observable variables, see equations (1)-(2).

Suppose we have discrete observations on Yt over an interval [0, T ]. Denote by ∆n the distance

between observations. It is well known that we can estimate the spot covariance matrix Ct at time

(i− 1)∆n with a local truncated realized volatility estimator,

Ĉi∆n =
1

kn∆n

kn−1∑
m=0

(∆n
i+mY )(∆n

i+mY )>1{‖∆n
i+mY ‖≤χ∆$

n }, (14)

where ∆n
i Y = Yi∆n − Y(i−1)∆n

and where kn is the number of observations in a local window.6 We

refer to the
(
Ĉi∆n

)
a,b

element of the matrix Ĉi∆n as Ĉab,i∆n .

If Ci∆n was observed, [H(C), G(C)]T could be estimated by the realized covariance between

G(Ci∆n) and H(Ci∆n), which is the sample analog of the definition of [H(C), G(C)]T . However,

we do not observe Ci∆n . If we replace it with Ĉi∆n in (14), we obtain the plug-in estimator

̂[H(C), G(C)]
Naive

T =
1

kn

[T/∆n]−2kn+1∑
i=1

((
H(Ĉ(i+kn)∆n

)−H(Ĉi∆n)
)(
G(Ĉ(i+kn)∆n

)−G(Ĉi∆n)
))

.

(15)

However, it turns out that due to the measurement errors in Ĉi∆n , this estimator is inconsistent.

We propose two estimators for the general quantity [H(C), G(C)]T . The first is a bias-corrected

sample analog of the definition of quadratic covariation between two Itô processes,

̂[H(C), G(C)]
AN

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

((
H(Ĉ(i+kn)∆n

)−H(Ĉi∆n)
)(
G(Ĉ(i+kn)∆n

)−G(Ĉi∆n)
)

− 2

kn

d∑
g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
. (16)

6It is also possible to define more flexible kernel-based estimators as in Kristensen (2010).
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Our second estimator is based on the following equality, which follows by the Itô lemma,

[H(C), G(C)]T =
d∑

g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)C

gh,ab
t dt, (17)

where C
gh,ab
t denotes the covariation between the volatility processes Cgh,t and Cab,t. The quantity

is thus a non-linear functional of the spot covariance and spot volatility of volatility matrices. Our

second estimator is a bias-corrected version of the sample counterpart of the “linearized” expression

in (17),

̂[H(C), G(C)]
LIN

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂ghH∂abG)(Ĉi∆n)×

(
(Ĉgh,(i+kn)∆n

− Ĉgh,i∆n)(Ĉab,(i+kn)∆n
− Ĉab,i∆n)− 2

kn
(Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n)

)
.

(18)

We now provide the intuition for the bias terms. If we had observations on Ci∆n , the estimators

of [H(C), G(C)]T would not need any bias-correction terms. It is useful to think of Ĉi∆n as an

estimator of integrated volatility matrix, Ĉi∆n = 1
kn∆n

∫ (i+kn)∆n

i∆n
Csds + Ui∆n , where Ui∆n is the

estimation error. The first part of the bias-correction in (16) and (18) is an additive term

− 3

k2
n

[T/∆n]−2kn+1∑
i=1

(
d∑

g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
. (19)

This term arises because of the estimation error Ui∆n . Intuitively, estimation of, e.g., variance

of functionals of Ci∆n by variance of functionals of Ĉi∆n overestimates it due to the additional

variability of Ui∆n . In particular, one can show that the additive bias-correction term in (19) is, up

to a scale factor, an estimator of the asymptotic covariance between the estimators of
∫ T

0 H(Ct)dt

and
∫ T

0 G(Ct)dt.

The second part of the bias-correction in (16) and (18) is the multiplicative correction factor 3/2.

This correction factor is needed because of a smoothing bias that arises due to the replacement

of Ci∆n by 1
∆n

∫ (i+kn)∆n

i∆n
Csds. To gain some intuition, consider the special case of d = 1 and

H (·) = G (·) = · . Suppose we had observations on 1
∆n

∫ (i+kn)∆n

i∆n
Csds. The ith summand in the

naive estimator of [C,C]T would be

(∫ (i+2kn)∆n

(i+kn)∆n

Csds−
∫ (i+kn)∆n

i∆n

Csds

)2

=

(∫ (i+kn)∆n

i∆n

(Cs+∆nkn − Cs) ds

)2

, (20)
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divided by ∆2
nk

3
n. Consider the weights that the integral

∫ (i+kn)∆n

i∆n
(Cs+∆nkn − Cs) ds

puts on ∆n-increments of the volatility Ct: these weights are triangular, i.e.,

(∆nkn − |∆nkn + i∆n − s|) I {s ∈ [i∆n, (i+ 2kn) ∆n]}. One can show that the squared

integral in (20) is proportional to the integral of the squared triangular weights,

1
(∆nkn)3

∫ (2kn+i)∆n

i∆n
(∆nkn − |∆nkn + i∆n − s|)2 ds. The latter integral equals 2

3 , hence the

estimator needs a multiplicative correction factor 3
2 .

It is useful to describe how our asymptotic theory is related to the earlier work of Jacod and

Rosenbaum (2013) and Jacod and Rosenbaum (2015), JR13 and JR15 henceforth. The parameter

of interest in those two papers is the integrated functional of volatility
∫ T

0 H(Ct)dt, which is different

from the quadratic covariation [H(C), G(C)]T . The estimation of integrated functionals of volatility

is simpler in a number of ways. First, the naive plug-in estimators of
∫ T

0 H(Ct)dt are consistent, and

a bias-correction is only needed to derive the asymptotic distribution. In contrast, the naive plug-

in estimators of [H(C), G(C)]T are inconsistent without a bias-correction. Second, the estimators

of
∫ T

0 H(Ct)dt have a rate of convergence n1/2, while our estimators have a rate of convergence

n1/4. Third, our analysis requires a proof strategy that is different from JR13&15. To obtain the

asymptotic distribution of the estimators of
∫ T

0 H(Ct)dt, JR13&15 approximate volatility to be

piecewise constant. This approximation does not work in our case, which substantially complicates

the proof. We also remark on another connection with JR15. One of the higher-order bias terms

in JR15 is of the form [H(C), H(C)]T . In the special case H(·) = G(·), aside from a scale factor

and the end-effects, our LIN estimator in equation (18) coincides with their estimator. Note that

JR15 only establish consistency of their estimator, which is all they need to implement their bias

correction. In contrast, our analysis considers estimators of a general quadratic covariation, derives

their asymptotic distributions, and proposes consistent estimators of the asymptotic variances.

Our two estimators, AN in equation (16) and LIN in (18), are identical when H and G are linear,

for example, when estimating the covariation between two volatility processes. In the univariate

case d = 1, when H(·) = G(·) = · , our estimator coincides with the volatility of volatility estimator

of Vetter (2015). Our contribution is the development of the asymptotic theory for general nonlinear

functionals and allowing d > 1.

How do the two estimators, AN and LIN, compare (when they are not identical)? In the next

section, we show that they have the same asymptotic distribution. In our Monte Carlo experiments

in Section 6, LIN estimator somewhat outperforms AN estimator. We leave the theoretical analysis
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of asymptotic higher-order properties of these estimators to future research.

3.2 Estimation in R-FM and IdioVol-FM models

In this section, we explain how to use formulas in equations (16) and (18) to obtain estimators for

the objects of interest in Section 2, see equations (6)–(12). In particular, each of these objects of

interest,

[CZj , CZs]T , Corr (CZj , CZs) , γZj , [CresidZj , CresidZs ]T ,

Corr
(
CresidZj , CresidZs

)
, QIdioVol-FM

Zj,Zs , and R2,IdioVol-FM
Zj ,

(21)

for j, s = 1, . . . , dS , can be written as

ϕ ([H1(C), G1(C)]T , . . . , [Hκ(C), Gκ(C)]T ) , (22)

for some smooth, real-valued functions ϕ, Hr, Gr, r = 1, . . . , κ. Each element in (22) is of the

form [Hr(C), Gr(C)]T , i.e., it is a quadratic covariation between functions of Ct, and hence can be

estimated using the estimators proposed in Section 3.1.

We start by discussing the first quantity in (21), which is the quadratic covariation between jth

and sth IdioVol, [CZj , CZs]T . It can be written as [H(C), G(C)]T if we choose H(Ct) = CZj,t and

G(Ct) = CZs,t. By equation (5), both CZj,t and CZs,t are functions of Ct.

Next, consider Corr (CZj , CZs) defined in equation (8). Correlation is a function of three

quadratic covariations, each of which can be represented in the form [Hr(C), Gr(C)]T . Therefore,

Corr (CZj , CZs) is of the form of equation (22).

Note that IdioVol-FM implies

γZj = ([Π,Π]T )−1 [Π, CZj ]T , and (23)

[CresidZj , CresidZs ]T = [CZj , CZs]T − γ>Zj [Π,Π]TγZs (24)

for j, s = 1, . . . , dS . Recall that CZj,t, CZs,t and every element of Πt are given real-valued functions

of Ct. Thus, the right-hand-sides of (23) and (24) have the form of equation (22), for a finite

number of quantities of the form [Hr(C), Gr(C)]T .

Finally, Corr
(
CresidZj , CresidZs

)
, QIdioVol-FM

Zj,Zs and R2,IdioVol-FM
Zj are smooth functions of

[CresidZj , CresidZj ]T , [CZj , CZj ]T , γZj , and [Π,Π]T , each of which is of the form of equation (22),
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and hence are themselves of the form of equation (22).

4 Asymptotic Properties

In this section, we first present the full list of assumptions for our asymptotic results. We then obtain

the joint asymptotic distribution between the general functionals [Hr(C), Gr(C)]T for r = 1, . . . , κ

introduced in Section 3.1. We also develop estimators for the asymptotic variance-covariance ma-

trix. The asymptotic distributions of the estimators of Corr (CZi, CZj) and other quantities of

interest in Section 2 follow by the Delta method (see Section 3.2 for details). Finally, to illustrate

the application of the general theory, we describe three statistical tests about the IdioVols, which

we later implement in the empirical and Monte Carlo analysis.

4.1 Assumptions

Recall that the d-dimensional process Yt represents the (log) prices of stocks, St, and factors Ft.

Assumption 1. Suppose Y is an Itô semimartingale on a filtered space (Ω,F , (Ft)t≥0,P),

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
E
δ(s, z)µ(ds, dz), (25)

where W is a dW -dimensional Brownian motion (dW ≥ d) and µ is a Poisson random measure on

R+×E, with E an auxiliary Polish space with intensity measure ν(dt, dz) = dt⊗λ(dz) for some σ-

finite measure λ on E. The process bt is Rd-valued optional, σt is Rd×RdW -valued, and δ = δ(w, t, z)

is a predictable Rd -valued function on Ω × R+ × E. Moreover, ‖δ(w, t ∧ τm(w), z)‖ ∧ 1 ≤ Γm(z),

for all (w,t,z), where (τm) is a localizing sequence of stopping times and, for some r ∈ [0, 1/2), the

function Γm on E satisfies
∫
E Γm(z)rλ(dz) <∞. The spot volatility matrix of Y is then defined as

Ct = σtσ
>
t . We assume that Ct is a continuous Itô semimartingale,7

Ct = C0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (26)

where b̃ is Rd × Rd-valued optional. Ct takes values in the space Md consisting of d × d positive

definite matrices. For a sequence of convex compact subsets (Km)m≥1 of Md, Ct ∈ Km for all

t ≤ τm.

7Note that σ̃s = (σ̃gh,m
s ) is (d × d × dW )-dimensional and σ̃sdWs is (d × d)-dimensional with (σ̃sdWs)gh =∑dW

m=1 σ̃
gh,m
s dWm

s .
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With the above notation, the elements of the spot volatility of volatility matrix and spot co-

variation of the continuous martingale parts of X and c are defined as follows,

C
gh,ab
t =

dW∑
m=1

σ̃gh,mt σ̃ab,mt , C
′g,ab
t =

dW∑
m=1

σgmt σ̃ab,mt . (27)

We assume the following for the process σ̃t:

Assumption 2. σ̃t is a continuous Itô semimartingale with its characteristics satisfying the same

requirements as that of Ct.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in

economics and finance. It allows for potential stochastic volatility and jumps in returns. Assump-

tion 2 is required to obtain the asymptotic distribution of estimators of the quadratic covariation

between functionals of the spot covariance matrix Ct. It is not needed to prove consistency. This

assumption also appears in Wang and Mykland (2014), Vetter (2015), and Kalnina and Xiu (2017).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (21) are functions of multiple objects of

the form [H(C), G(C)]T . Therefore, if we can obtain a multivariate asymptotic distribution for a

vector with elements of the form [H(C), G(C)]T , the asymptotic distributions for all our estimators

follow by the Delta method. The current section presents this asymptotic distribution.

Let H1, G1, . . . ,Hκ, Gκ be given smooth real-valued functions. We are interested in the asymp-

totic behavior of vectors(
̂[H1(C), G1(C)]

AN

T , . . . , ̂[Hκ(C), Gκ(C)]
AN

T

)>
and(

̂[H1(C), G1(C)]
LIN

T , . . . , ̂[Hκ(C), Gκ(C)]
LIN

T

)>
.

(28)

The following theorem summarizes the joint asymptotic behavior of the estimators.

Theorem 1. Let ̂[Hr(C), Gr(C)]T denote either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T defined

in equations (16) and (18), where Hr and Gr are three times differentiable real-valued functions,

for r = 1, . . . , κ. Suppose Assumptions 1 and 2 hold. Fix kn = θ∆
−1/2
n for some θ ∈ (0,∞) and set
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3/4(2− r) ≤ $ < 1
2 . Then, as ∆n → 0,

∆−1/4
n


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

. . .

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L-s−→MN(0,ΣT ), (29)

Let Σr,s
T be the (ΣT )r,s element of the κ× κ matrix ΣT . We have

Σr,s
T = Σ

r,s,(1)
T + Σ

r,s,(2)
T + Σ

r,s,(3)
T ,

Σ
r,s,(1)
T =

6

θ3

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Cs)

)[
Ct(gh, jk)Ct(ab, lm)

+ Ct(ab, jk)Ct(gh, lm)
]
dt,

Σ
r,s,(2)
T =

151θ

140

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk
t C

ab,lm
t

+ C
ab,jk
t C

gh,lm
t

]
dt,

Σ
r,s,(3)
T =

3

2θ

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
Ct(gh, jk)C

ab,lm
t

+ Ct(ab, lm)C
gh,jk
t + Ct(gh, lm)C

ab,jk
t + Ct(ab, jk)C

gh,lm
t

]
dt,

with

Ct(gh, jk) = Cgj,tChk,t + Cgk,tChj,t.

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and

Eagleson (1978) and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of

the estimators depends on the paths of the spot covariance and the volatility of volatility process.

The rate of convergence ∆
−1/4
n has been shown to be the optimal for volatility of volatility estimation

(under the assumption of no volatility jumps).

The asymptotic variance of the estimators depends on the tuning parameter θ whose choice

may be crucial for the reliability of the inference. We document the sensitivity of the inference

theory to the choice of the parameter θ in a Monte Carlo experiment (see Section 6).
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4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element Σr,s
T of the asymptotic covariance matrix in

Theorem 1, we introduce the following quantities:

Ω̂
r,s,(1)
T = ∆n

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)
×
[
C̃i∆n(gh, jk)C̃i∆n(ab, lm) + C̃i∆n(ab, jk)C̃i∆n(gh, lm)

]
,

Ω̂
r,s,(2)
T =

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)[1

2
λ̂n,ghi λ̂n,jki λ̂n,abi+2kn

λ̂n,lmi+2kn

+
1

2
λ̂n,abi λ̂n,lmi λ̂n,ghi+2kn

λ̂n,jki+2kn
+

1

2
λ̂n,abi λ̂n,jki λ̂n,ghi+2kn

λ̂n,lmi+2kn
+

1

2
λ̂n,ghi λ̂n,lmi λ̂n,abi+2kn

λ̂n,jki+2kn

]
,

Ω̂
r,s,(3)
T =

3

2kn

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)
[
C̃i∆n(gh, jk)λ̂n,abi λ̂n,lmi + C̃i∆n(ab, lm)λ̂n,ghi λ̂n,jki

+ C̃i∆n(gh, lm)λ̂n,abi λ̂n,jki + (C̃i∆n(ab, jk)λ̂n,ghi λ̂n,lmi

]
,

with λ̂n,jki = Ĉn,jki+kn
− Ĉn,jki and C̃i∆n(gh, jk) = (Ĉgj,i∆nĈhk,i∆n + Ĉgk,i∆nĈhj,i∆n).

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold. Then, as ∆n → 0,

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T , (30)

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T , and (31)

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T . (32)

The estimated matrix Σ̂T is symmetric but is not guaranteed to be positive semi-definite. By

Theorem 1, Σ̂T is positive semi-definite in large samples. An interesting question is the estimation

of the asymptotic variance using subsampling or bootstrap methods, and we leave it for future

research.

Remark 1: The rate of convergence in equation (30) can be shown to be ∆
−1/2
n , and the rate

of convergence in (31) and (32) can be shown to be ∆
−1/4
n .

Remark 2: In the one-dimensional case (d = 1), much simpler estimators of Σ
r,s,(2)
T can be

constructed using the quantities λ̂n,jki λ̂n,lmi λ̂n,ghi+kn
λ̂n,xyi+kn

or λ̂n,jki λ̂n,lmi λ̂n,ghi λ̂n,xyi as in Vetter (2015).
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However, in the multidimensional case, the latter quantities do not identify separately the quantity

Ct
jk,lm

Ct
gh,xy

since the combination Ct
jk,lm

Ct
gh,xy

+Ct
jk,gh

Ct
lm,xy

+Ct
jk,xy

Ct
gh,lm

shows up in a

non-trivial way in the limit of the estimator.

Corollary 3. Let ̂[Hr(C), Gr(C)]T denote either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T defined

in equations (16) and (18). Suppose the assumptions of Theorem 1 hold. Then, as ∆n → 0,

∆−1/4
n Σ̂

−1/2
T


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

...

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L−→ N(0, Iκ). (33)

In the above, we use L to denote the convergence in distribution and Iκ the identity matrix

of order κ. Corollary 3 states the standardized asymptotic distribution, which follows directly

from the properties of the stable-in-law convergence. Similarly, by the Delta method, standardized

asymptotic distribution can also be derived for the estimators of the quantities in (21). These

standardized distributions allow the construction of confidence intervals for all the latent quantities

of the form [Hr(C), Gr(C)]T and, more generally, functions of these quantities.

4.4 Tests

As an illustration of application of the general theory, we provide three tests about the dependence of

Idiosyncratic Volatility. Our framework allows to test general hypotheses about the joint dynamics

of any subset of the available stocks. The three examples below are stated for one pair of stocks,

and correspond to the tests we implement in the empirical and Monte Carlo studies.

First, one can test for the absence of dependence between the IdioVols of the returns on assets

j and s,

H1
0 : [CZj , CZs]T = 0 vs H1

1 : [CZj , CZs]T 6= 0. (34)

The null hypothesis H1
0 is rejected whenever the t-test exceeds the α/2-quantile of the standard

normal distribution, Zα,

∆−1/4
n

∣∣∣ ̂[CZj , CZs]T

∣∣∣√
ÂVAR

(
CZj , CZs

) > Zα/2. (35)
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Second, we can test for all the IdioVol factors Π being irrelevant to explain the dynamics of IdioVol

shocks of stock j,

H2
0 : [CZj ,Π]T = 0 vs H2

1 : [CZj ,Π]T 6= 0. (36)

Under this null hypothesis, the vector of IdioVol factor loadings equals zero, γZj = 0. The null

hypothesis H2
0 is rejected when

∆−1/4
n

(
̂[CZj ,Π]T

)> (
ÂVAR

(
CZj ,Π

))−1 ̂[CZj ,Π]T > X
2
dΠ,1−α, (37)

where dΠ denotes the number of IdioVol factors, and where X 2
dq ,1−α is the (1 − α) quantile of the

X 2
dq

distribution. One can of course also construct a t-test for irrelevance of any one particular

IdioVol factor. The final example is a test for absence of dependence between the residual IdioVols,

H3
0 : [CresidZj , CresidZs ]T = 0 vs H3

1 : [CresidZj , CresidZs ]T 6= 0. (38)

The null can be rejected when the following t-test exceeds the critical value,

∆−1/4
n

∣∣∣ ̂[CresidZj , CresidZs ]
T

∣∣∣√
ÂVAR

(
CresidZj , CresidZs

) > Zα/2. (39)

Each of the above estimators

̂[CZj , CZs]T ,
̂[CZj ,Π]T , and ̂[CresidZj , CresidZs ]

T

can be obtained by choosing appropriate pair(s) of transformationsH andG in the general estimator

̂[H(C), G(C)]T , see Section 3 for details. Any of the two types of the latter estimator can be used,

̂[H(C), G(C)]
AN

T or ̂[H(C), G(C)]
LIN

T .

For the first two tests, the expression for the true asymptotic variance, AVAR, is obtained using

Theorem 1 and its estimation follows from Theorem 2. The asymptotic variance in the third test is

obtained by applying the Delta method to the joint convergence result in Theorem 1. The expression

for the estimator of the asymptotic variance, ÂVAR, follows from Theorem 2. Under R-FM and

the assumptions of Theorem 1, Corollary 3 implies that the asymptotic size of the two types of
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tests for the null hypotheses H1
0 and H2

0 is α, and their power approaches 1. The same properties

apply for the tests of the null hypotheses H3
0 with our R-FM and IdioVol-FM representations.

Theoretically, it is possible to test for absence of dependence in the IdioVols at each point

in time. In this case the null hypothesis is H1′
0 : [CZj , CZs]t = 0 for all 0 ≤ t ≤ T , which is,

in theory, stronger than our H1′
0 . In particular, Theorem 1 can be used to set up Kolmogorov-

Smirnov type of tests for H ′10 in the same spirit as Vetter (2015). However, we do not pursue this

direction in the current paper for two reasons. First, the testing procedure would be more involved.

Second, empirical evidence suggests nonnegative dependence between IdioVols, which means that

in practice, it is not too restrictive to assume [CZj , CZs]t ≥ 0 ∀t, under which H1
0 and H1′

0 are

equivalent.

5 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IdioVols using high frequency

data. One of our main findings is that stocks’ IdioVols co-move strongly with the market volatility.

This is a quite surprising finding. It is of course well known that the total volatility of stocks moves

with the market volatility. However, we stress that we find that the strong effect is still present

when considering the IdioVols.

We use full record transaction prices from NYSE TAQ database for 30 constituents of the

DJIA index over the time period 2003-2012, see Table 1. After removing the non-trading days, our

sample contains 2517 days. The selected stocks were the constituents of the DJIA index in 2007.

We also use the high-frequency data on nine industry Exchange-Traded Funds, ETFs (Consumer

Discretionary, Consumer Staples, Energy, Financial, Health Care, Industrial, Materials, Technology,

and Utilities), and the high-frequency size and value Fama-French factors, see Aı̈t-Sahalia, Kalnina,

and Xiu (2020). For each day, we consider data from the regular exchange opening hours from time

stamped between 9:30 a.m. until 4 p.m. We clean the data following the procedure suggested by

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), remove the overnight returns and then

sample at 5 minutes. This sparse sampling has been widely used in the literature because the

effect of the microstructure noise and potential asynchronicity of the data is less important at this

frequency, see also Liu, Patton, and Sheppard (2015). The jump truncation threshold is the same

as in simulations, see Section 6. The number of observations in the local window is taken as in

Theorem 1 to be kn = θ∆
−1/2
n . We take θ = 2.5 and ∆n = 1/252/(6.5× 12), i.e., ∆n is 5 minutes
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(with one year being a unit of time), which corresponds to the local window of approximately one

week.

To obtain the Idiosyncratic Volatilities, the preliminary step is to estimate the Return Factor

Model (R-FM) for each stock. Figures F.1 and F.2 contain plots of the time series of the estimated

R2
Y j of the R-FM for each stock.8 Each plot contains monthly R2

Y j from two Return Factor Models,

CAPM and the Fama-French regression with market, size, and value factors. Figures F.1 and F.2

show that these time series of all stocks follow approximately the same trend with a considerable

increase in the contribution around the crisis year 2008. Higher R2
Y j indicates that the systematic

risk is relatively more important, which is typical during crises. R2
Y j is consistently higher in the

Fama-French regression model compared to the CAPM regression model, albeit not by much. We

proceed to investigate the dynamic properties of the panel of Idiosyncratic Volatilities.

We first investigate the dependence in the (total) Idiosyncratic Volatilities. Our panel has

435 pairs of stocks. For each pair of stocks, we compute the correlation between the IdioVols,

Corr (CZi, CZj), see Section 3.2 for the implementation details. All pairwise correlations are pos-

itive in our sample, and their average is 0.55. We find that both types of estimators, AN and

LIN, produce very similar results and report only the AN estimator for brevity. Figure 1 maps the

network of dependency in the IdioVol. We simultaneously test 435 hypotheses of no correlation,

and Figure 1 connects only the assets, for which the null is rejected. We account for multiple test-

ing by controlling the false discovery rate at 5%. Overall, Figure 1 shows that the cross-sectional

dependence between the IdioVols is very strong.

Could missing factors in the R-FM provide an explanation? Omitted return factors in the

R-FM are captured by the idiosyncratic returns, and can therefore induce correlation between the

estimated IdioVols, provided these missing return factors have non-negligible volatility of volatil-

ity. To investigate this possibility, we consider the correlations between idiosyncratic returns,

Corr(Zi, Zj).
9 Table 2 presents a summary of how estimates Corr(Zi, Zj) are related to the

estimates of correlation in IdioVols, Corr(CZi, CZj). In particular, different rows in Table 2 dis-

8For the jth stock, our analog of the coefficient of determination in the R-FM is R2
Y j = 1−

∫ T
0 CZj,tdt∫ T
0 CY j,tdt

. We estimate

R2
Y j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R2

Y j requires a choice of a
block size for the spot volatility estimation; we choose two hours in practice (the number of observations in a block,
say ln, has to satisfy l2n∆n → 0 and l3n∆n → ∞, so it is of smaller order than the number of observations kn in our
estimators of Section 3).

9Our measure of correlation between the idiosyncratic returns dZi and dZj is

Corr(Zi, Zj) =

∫ T

0
CZiZj,tdt√∫ T

0
CZi,tdt

√∫ T

0
CZj,tdt

, i, j = 1, . . . , dS , (40)
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Figure 1: The network of dependencies in total IdioVols. The color and thickness of each line is proportional
to the estimated value of Corr (CZi, CZj), the quadratic-covariation based correlation between the IdioVols,
defined in equation (8) (red and thick lines indicate high correlation). We simultaneously test 435 null
hypotheses of no correlation, and the lines are only plotted when the null is rejected.

play average values of Ĉorr (CZi, CZj) among those pairs, for which |Ĉorr(Zi, Zj)| is below some

threshold. For example, the last-but-one row in Table 2 indicates that there are 56 pairs of stocks

with |Ĉorr(Zi, Zj)| < 0.01, and among those stocks, the average correlation between IdioVols,

Corr (CZi, CZj), is estimated to be 0.579. We observe that Ĉorr (CZi, CZj) is virtually the same

compared to pairs of stocks with high |Corr(Zi, Zj)|. These results suggest that missing return

factors cannot explain dependence in IdioVols for all considered stocks. This finding is in line with

the empirical analysis of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) with daily and monthly

returns.

To understand the source of the strong cross-sectional dependence in the IdioVols, we con-

sider the Idiosyncratic Volatility Factor Model (IdioVol-FM) of Section 2. We first use the market

volatility as the only IdioVol factor.10 Table 3 reports the estimates of the IdioVol loading (γ̂Zi)

and the R2 of the IdioVol-FM (R2,IdioVol-FM
Zi , see equation (10)). Table 3 uses two different defi-

nitions of IdioVol, one defined with respect to CAPM, and a second IdioVol defined with respect

to Fama-French three factor model. For every stock, the estimated IdioVol factor loading is posi-

tive, suggesting that the Idiosyncratic Volatility co-moves with the market volatility. Next, Figure

where CZiZj,t is the spot covariation between Zi and Zj . Similarly to R2
Y j , we estimate Corr(Zi, Zj) using the

method of Jacod and Rosenbaum (2013).
10We also considered the volatility of size and value Fama-French factors. However, both these factors turned out

to have very low volatility of volatility and therefore did not significantly change the results.
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2 shows the implications for the cross-section of the one-factor IdioVol-FM when the IdioVol is

defined with respect to CAPM. The average pairwise correlations between the residual IdioVols,

Ĉorr (CZi, CZj), decrease to 0.25. However, the market volatility cannot explain all cross-sectional

dependence in residual IdioVols, as evidenced by the remaining links in Figure 2.

Finally, we consider an IdioVol-FM with ten IdioVol factors, market volatility and the volatilities

of nine industry ETFs. Figure 3 shows the implications for the cross-section of this ten-factor

IdioVol-FM when the IdioVol is defined with respect to CAPM. The average pairwise correlations

between the residual IdioVols, Ĉorr (CZi, CZj), decrease further to 0.18. As we can see from Figure

3, the remaining cross-sectional dependence is statistically insignificant after accounting for multiple

testing.11 For completeness, Figure F.3 in the Appendix graphs all correlations of Figures 1 – 3.

For comparison, we also calculate the naive estimators, see equation (15). Of course, we do

not have valid confidence intervals to accompany these estimators. In our data set, the relative

differences between the naive and the bias-corrected estimators are around 4% for γZj , they range,

across stocks, between 3 and 6% for R2,IdioVol-FM
Zj , between 2 and 7% for Corr (CZi, CZj), and

between −42% and 7% for Corr(CresidZi , CresidZj ). We find that in the instances where the differences

are small, the multiplicative bias, i.e., the factor 2/3, dominates the additive bias both in the

numerator and the denominator, so that the multiplicative bias approximately cancels out. We find

that the differences between the bias-corrected and naive estimators increase if we only consider

the time period before or after the financial crisis of 2009.

11Recall that we are using false discovery rate to control for multiple testing, and notice from Figure 2 that the
number of individually rejected null hypotheses is 16, less than 0.05× 435.
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Figure 2: The network of dependencies in residual IdioVols with a single IdioVol factor: the market variance.

Figure 3: The network of dependencies in residual IdioVols with ten IdioVol factors: the market variance
and the variances of nine industry ETFs.

In both figures, the color and thickness of each line is proportional to the estimated value of
Corr

(
CresidZi , CresidZj

)
, the quadratic-covariation based correlation between the residual IdioVols, defined in

equation (9), of each pair of stocks (red and thick lines indicate high correlation). We simultaneously test
435 null hypotheses of no correlation, and the lines are only plotted when the null is rejected.
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Sector Stock Ticker

Financial American International Group, Inc. AIG
American Express Company AXP
Citigroup Inc. C
JPMorgan Chase & Co. JPM

Energy Chevron Corp. CVX
Exxon Mobil Corp. XOM

Consumer Staples Coca Cola Company KO
Altria MO
The Procter & Gamble Company PG
Wal-Mart Stores WMT

Industrials Boeing Company BA
Caterpillar Inc. CAT
General Electric Company GE
Honeywell International Inc HON
3M Company MMM
United Technologies UTX

Technology Hewlett-Packard Company HPQ
International Bus. Machines IBM
Intel Corp. INTC
Microsoft Corporation MSFT

Health Care Johnson & Johnson JNJ
Merck & Co. MRK
Pfizer Inc. PFE

Consumer Discretionary The Walt Disney Company DIS
Home Depot Inc HD
McDonald’s Corporation MCD

Materials Alcoa Inc. AA
E.I. du Pont de Nemours & Company DD

Telecommunications Services AT&T Inc. T
Verizon Communications Inc. VZ

Table 1: The table lists the stocks used in the empirical application (for the time period 2003-2012). They are
the 30 constituents of DJIA in 2007. The first column provides the Global Industry Classification Standard
(GICS) sectors, the second the names of the companies and the third their tickers.
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CAPM FF3 Model

Stock γ̂z R̂2,IdioVol-FM
Z p-val γ̂z R̂2,IdioVol-FM

Z p-val

AIG 1.49 0.02 0.093 1.53 0.02 0.085
AXP 3.02 0.27 0.146 2.98 0.27 0.149

C 3.46 0.108 0.007 3.48 0.11 0.007
JPM 2.44 0.20 0.007 2.46 0.21 0.006
CVX 1.08 0.51 0.030 1.07 0.51 0.030
XOM 0.60 0.48 0.044 0.61 0.49 0.043
KO 0.33 0.58 0.012 0.33 0.58 0.011
MO 0.44 0.35 0.001 0.44 0.35 0.001
PG 0.43 0.63 0.001 0.43 0.63 0.002

WMT 0.45 0.58 0.006 0.45 0.56 0.008
BA 0.47 0.42 0.003 0.48 0.44 0.003

CAT 0.69 0.49 0.009 0.69 0.48 0.009
GE 1.14 0.26 0.003 1.15 0.26 0.002

HON 0.53 0.44 0.014 0.53 0.43 0.014
MMM 0.39 0.55 0.000 0.38 0.54 0.000
UTX 0.50 0.52 0.003 0.50 0.53 0.004
HPQ 0.65 0.33 0.004 0.66 0.34 0.004
IBM 0.35 0.48 0.011 0.35 0.47 0.012

INTC 0.46 0.46 0.003 0.46 0.46 0.003
MSFT 0.68 0.52 0.008 0.67 0.51 0.010
JNJ 0.41 0.68 0.007 0.40 0.67 0.007

MRK 0.54 0.32 0.001 0.54 0.32 0.001
PFE 0.43 0.34 0.002 0.43 0.34 0.001
DIS 0.57 0.48 0.001 0.58 0.49 0.001
HD 0.66 0.45 0.010 0.66 0.45 0.010

MCD 0.29 0.29 0.003 0.29 0.29 0.003
AA 3.03 0.41 0.019 3.04 0.42 0.018
DD 0.61 0.59 0.001 0.61 0.59 0.001
T 0.76 0.45 0.003 0.76 0.44 0.003

VZ 0.54 0.55 0.000 0.54 0.54 0.001

Table 3: Estimates of the IdioVol factor loading (γ̂Z , see equation (6)), and the contribution of the market

volatility to the variation in the IdioVols (R̂2,IdioVol-FM
Z , see equation (10)). The table considers two R-FMs:

the left panel defines the IdioVol with respect to CAPM, and the right panel defines the IdioVol with respect
to the three-factor Fama-French model. In both cases, the market volatility is the only IdioVol factor. P-val
is the p-value of the test of the absence of dependence between the IdioVol and the market volatility for a
given individual stock, see equation (37).
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6 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data gener-

ating process (DGP) is similar to that of Li, Todorov, and Tauchen (2013) and is constructed as

follows. Denote by Y1 and Y2 the log-prices of two individual stocks, and by X the log-price of

the market portfolio. Recall that the superscript c indicates the continuous part of a process. We

assume

dXt = dXc
t + dJ3,t, dXc

t =
√
CX,tdWt,

and, for j = 1, 2,

dYj,t = βtdX
c
t + dỸ c

j,t + dJj,t, dỸ c
j,t =

√
CZj,tdW̃j,t.

In the above, CX is the spot volatility of the market portfolio, W̃1 and W̃2 are Brownian motions

with Corr(dW̃1,t, dW̃2,t) = 0.4, and W is an independent Brownian motion; J1, J2, and J3 are

independent compound Poisson processes with intensity equal to 2 jumps per year and jump size

distribution N(0, 0.022). The beta process is time-varying and is specified as βt = 0.5+0.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four processes

f1, . . . , f4 as mutually independent Cox-Ingersoll-Ross processes,

df1,t = 5(0.09− f1,t)dt+ 0.35
√
f1,t

(
− 0.8dWt +

√
1− 0.82dB1,t

)
,

dfj,t = 5(0.09− fj,t)dt+ 0.35
√
fj,tdBj,t , for j = 2, 3, 4,

where B1, . . . , B4 are independent standard Brownian Motions, which are also independent from

the Brownian Motions of the return Factor Model.12 We use the first process f1 as the market

volatility, i.e., CX,t = f1,t. We use the other three processes f2, f3, and f4 to construct three

different specifications for the IdioVol processes CZ1,t and CZ2,t, see Table 4 for details. The

common Brownian Motion Wt in the market portfolio price process Xt and its volatility process

CX,t = f1,t generates a leverage effect for the market portfolio. The value of the leverage effect

is −0.8, which is standard in the literature, see Kalnina and Xiu (2017), Aı̈t-Sahalia, Fan, and Li

(2013) and Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2017).13

12The Feller property is satisfied implying the positiveness of the processes (fj,t)1≤j≤4.
13Notice that by Itô Lemma, each of these three models can be expressed at the level of equation (1) for the vector
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CZ1,t CZ2,t

Model 1 0.1 + 1.5f2,t 0.1 + 1.5f3,t

Model 2 0.1 + 0.6CX,t + 0.4f2,t 0.1 + 0.5CX,t + 0.5f3,t

Model 3 0.1 + 0.45CX,t + f2,t + 0.4f4,t 0.1 + 0.35CX,t + 0.3f3,t + 0.6f4,t

Table 4: Different specifications for the Idiosyncratic Volatility processes CZ1,t and CZ2,t.

We set the time span T equal to 1,260 or 2,520 days, which correspond approximately to 5

and 10 business years. These values are standard in the nonparametric leverage effect estimation

literature (see Aı̈t-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2017)), where the rate of

convergence is also ∆−1/4. Each day consists of 6.5 trading hours. We consider two different values

for the sampling frequency, ∆n = 1 minute and ∆n = 5 minutes. We follow Li, Todorov, and

Tauchen (2016) and set the jump truncation threshold un in day t at 3σ̂t∆
0.49
n , where σ̂t is the

squared root of the annualized bipower variation of Barndorff-Nielsen and Shephard (2004). We

choose four different values for the width of the subsamples, which corresponds to θ = 1.5, 2, 2.5

and 3 (recall that the number of observations in a window is kn = θ/
√

∆n). We use 10,000 Monte

Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators (using Model 3). We consider

the following estimands:

� the IdioVol factor loading of the first stock, γZ1,

� the contribution of the market volatility to the variation of the IdioVol of the first stock

R2,IdioVol-FM
Z1 ,

� the correlation between the Idiosyncratic Volatilities of stocks 1 and 2, Corr (CZ1, CZ2),

� the correlation between the residual Idiosyncratic Volatilities, Corr
(
CresidZ1 , CresidZ2

)
.

The interpretation of simulation results is simpler when the quantities of interest do not change

across simulations. To achieve that, we generate once and keep fixed the paths of the processes

CX,t and (fj,t)0≤j≤4 and replicate several times the other parts of the DGP.

In Table 5, we report the median bias, the interquartile range (IQR), and the RMSE of the

two type of the bias-corrected estimators as well as the naive estimator for each estimand using

5 minutes data over 10 years. Consider first the comparison of the AN and LIN estimators. One

(Xt, Y1,t, Y2,t)
′ and equation (2) for the volatility matrix of this vector.
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does not consistently overperform the other in terms of the bias or the IQR. Interestingly, in

terms of the RMSE, the LIN estimator outperforms the AN estimator in every scenario considered.

The naive estimators are substantially biased. The comparison of the bias-corrected estimators

and the naive estimators reveals the usual bias-variance trade-off, as the bias-corrected estimators

have smaller bias but larger IQR than the naive estimator. In terms of RMSE, the bias-corrected

estimators generally outperform the naive estimator: RMSE is significantly lower when estimating

γZ1, R2,IdioVol-FM
Z1 , or Corr (CZ1, CZ2), while the results for Corr

(
CresidZ1 , CresidZ2

)
are mixed.

It is also informative to see how these results change when we increase the sampling frequency. In

Table 6, we report the results with ∆n = 1 minute in the same setting. The qualitative conclusions

of Table 5 remain true in Table 6. Compared to Table 5, the bias and IQR are smaller. However,

the magnitude of the decrease of the IQR is small.

Finally, Table 7 contains results from same experiment using data sampled at one minute over

5 years. Despite using more than twice as many observations than in the first experiment, the

precision is not as good. In other words, increasing the time span is more effective for precision

gain than increasing the sampling frequency. The qualitative conclusions generally remain the same

as in Table 5.

Next, we study the empirical rejection probabilities of the three statistical tests as outlined in

Section 4.4. The first null hypothesis is the absence of dependence between the IdioVols, H1
0 :

[CZ1, CZ2]T = 0. The second null hypothesis we test is the absence of dependence between the

IdioVol of the first stock and the market volatility, H2
0 : [CZ1, CX ]T = 0. The third null hypothesis

is the absence of dependence in the two residual IdioVols, H3
0 : [CresidZ1 , CresidZ2 ]T = 0. We use Model

1 for the first two hypotheses and Model 2 for the third hypothesis.

The three panels of Table 8 contain the empirical rejection probabilities for the three null

hypotheses. We present the results for two sampling frequencies (∆n = 1 minute and ∆n =

5 minutes) and the two type of estimators (AN and LIN). We see that the empirical rejection

probabilities are reasonably close to the nominal size of the test. Neither type of estimator (AN or

LIN) seems to dominate the other. Consistent with the asymptotic theory, the empirical rejection

probabilities of the three tests become closer to the nominal size of the test when frequency is

higher.
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Ĉ
or
r
( Cre

si
d

Z
1
,C

r
es
id

Z
2

) 0
.3

00
0
.2

61
0
.2

35
0.

19
9

0.
39

4
0.

30
9

0.
26

6
0.

21
3

0.
24

7
0.

24
1

0.
23

4
0.

22
1

T
ab

le
5:

F
in

it
e

sa
m

p
le

p
ro

p
er

ti
es

of
ou

r
es

ti
m

a
to

rs
u
si

n
g

1
0

y
ea

rs
o
f

d
a
ta

sa
m

p
le

d
a
t

5
m

in
u

te
s.

T
h
e

tr
u

e
va

lu
es

a
re
γ
Z

1
=

0.
4
5
0
,
R

2
,I
d
io
V
o
l-
F
M

Z
1

=
0.

34
2,
C
or
r

(C
Z

1
,C

Z
2
)

=
0.

52
3,
C
or
r
( Cre

s
id

Z
1

,C
r
e
s
id

Z
2

) =
0.

4
2
4
.

M
o
d

el
3
.

31



L
IN

A
N

N
ai

ve

θ̂
1.

5
2

2.
5

3
1.

5
2

2.
5

3
1.

5
2

2.
5

3

M
e
d

ia
n

B
ia

s

γ̂
Z

1
-0

.0
34

-0
.0

29
-0

.0
22

-0
.0

13
-0

.0
52

-0
.0

44
-0

.0
36

-0
.0

25
-0

.3
04

-0
.2

95
-0

.2
75

-0
.2

67

R̂
2
,I
d
io
V
o
l-
F
M

Z
1

-0
.1

40
-0

.1
23

-0
.1

09
-0

.0
86

-0
.1

35
-0

.1
17

-0
.1

03
-0

.0
80

-0
.4

96
-0

.4
92

-0
.4

77
-0

.4
73

Ĉ
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∆n = 5 minutes ∆n = 1 minute

θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5
AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : H1
0 : [CZ1, CZ2]T = 0, Model 1

α = 10% 9.7 10.6 10.6 12.6 9.7 10.3 10.2 9.7 10.0 10.2 9.8 10.2
α = 5% 4.7 5.1 4.5 5.3 4.8 5.6 5.3 5.3 5.2 5.3 4.9 5.1
α = 1% 0.9 1.1 0.9 1.2 0.9 1.1 1.1 1.1 1.2 1.1 1.0 1.0

Panel B : H2
0 : [CZ1, CX ]T = 0, Model 1

α = 10% 12.1 10.2 10.0 10.6 9.8 11.0 11.0 10.4 10.3 10.4 10.4 10.4
α = 5% 6.2 5.0 4.5 5.2 4.6 5.4 5.5 5.4 5.2 5.1 5.2 5.3
α = 1% 1.5 1.0 0.8 1.0 0.9 1.2 1.1 1.1 1.0 0.9 0.8 1.0

Panel C : H3
0 : [CresidZ1 , CresidZ2 ]T = 0, Model 2

α = 10% 10.0 10.1 12.1 10.8 9.9 12.6 10.1 10.3 10.6 11.3 10.1 11.4
α = 5% 5.0 6.3 5.1 6.3 5.1 6.7 5.5 5.5 5.3 5.9 5.2 6.0
α = 1% 1.1 1.5 0.8 1.6 1.1 1.4 1.1 1.2 1.3 1.3 1.3 1.5

Table 8: Panel A contains the empirical rejection probabilities of the test of absence of dependence between
IdioVols. Panel B contains the empirical rejection probabilities of the test of absence of dependence between
the IdioVol and the market volatility. Panel C contains the empirical rejection probabilities of the test
absence of dependence between residual IdioVols. T = 10 years. α denotes the nominal size of the test.

7 Conclusion

We introduce an econometric framework for analysis of cross-sectional dependence in the IdioVols of

assets using high frequency data. First, we provide bias-corrected estimators of standard measures

of dependence between IdioVols, as well as the associated asymptotic theory. Second, we study

an IdioVol Factor Model, in which we decompose the variation in IdioVols into two parts: the

variation related to the systematic factors such as the market volatility, and the residual variation.

We provide the asymptotic theory that allows us to test, for example, whether the residual (non-

systematic) components of the IdioVols exhibit cross-sectional dependence.

To provide the bias-corrected estimators and inference results, we develop a new asymptotic

theory for general estimators of quadratic covariation of vector-valued (possibly) nonlinear trans-

formations of the spot covariance matrices. This theoretical contribution is of its own interest, and

can be applied in other contexts. For example, our results can be used to conduct inference for the

cross-sectional dependence in asset betas.
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We apply our methodology to the 30 Dow Jones Industrial Average components, and document

strong cross-sectional dependence in their Idiosyncratic Volatilities. We consider two different sets

of Idiosyncratic Volatility factors. We find that a single market volatility factor cannot fully account

for the cross-sectional dependence in Idiosyncratic Volatilities, while this conclusion is reversed with

additional industry volatility factors. For each model, we map out the network of dependencies in

residual (non-systematic) Idiosyncratic Volatilities across all stocks.
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Appendix

The Appendix collects all proofs (Sections A-D), and presents additional figures for the empirical
application (in Section F).

A Notation for Proofs

Our notation is similar to that of the proofs of Jacod and Rosenbaum (2015) whenever possible. Throughout,

we denote by K a generic constant, which may change from line to line. We let by convention
∑a′

i=a = 0
when a > a′. For simplicity, we omit the subscript r for results involving only one object with this subscript.
By the usual localization argument, there exists a π-integrable function J on E and a constant such that
the stochastic processes in equations (26) and (27) satisfy

‖b‖, ‖b̃‖, ‖c‖, ‖c̃‖, J ≤ A, ‖δ(w, t, z)‖r ≤ J(z). (A.1)

For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
, and

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

For convenience, we decompose Yt as

Yt = Y0 + Y ′t +
∑
s≤t

∆Ys.

where Y ′t =
∫ t

0
b
′

sds+
∫ t

0
σsdWs and b′t = bt −

∫
δ(t, z)1{‖δ(t,z)‖≤1}π(dz).

Let Ĉ ′ni be the local estimator of the spot variance of the unobservable process Y ′, i.e.,

Ĉ ′ni =
1

kn∆n

kn−1∑
u=0

(∆n
i+uY

′)(∆n
i+uY )′> = (Ĉ ′n,ghi )1≤g,h≤d. (A.2)

There is no jump truncation applied in the definition of Ĉ ′ni since the process Y ′ is continuous. Hence, it is

more convenient to work with Ĉ ′ni rather than Ĉni (defined in equation (14)).
We also define

αni = (∆n
i Y
′)(∆n

i Y
′)> − Cni ∆n, νni = Ĉ

′n
i − Cni , and λni = Ĉ

′n
i+kn − Ĉ

′n
i , (A.3)

which satisfy

νni =
1

kn∆n

kn−1∑
j=0

(αni+j + (Cni+j − Cni )∆n) and λni = νi+kn − νni + ∆n(Cni+kn − C
n
i ). (A.4)

The following multidimensional quantities will be used in the sequel

ζ(1)ni =
1

∆n
∆n
i Y
′(∆n

i Y
′)> − Cni−1, ζ(2)ni = ∆n

i c,

ζ ′(u)ni = E(ζ(u)ni |Fni−1), ζ ′′(u)ni = ζ(u)ni − ζ ′(u)ni ,with ζr(u)ni =
(
ζr(u)n,ghi

)
1≤g,h≤d

.
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We also define, for m ∈ {0, . . . , 2kn − 1} and j, l ∈ Z,

ε(1)nm =

{
−1 if 0 ≤ m < kn

+1 if kn ≤ m < 2kn,
, ε(2)nm =

2kn−1∑
q=m+1

ε(1)nq = (m+ 1) ∧ (2kn −m− 1),

For any u, v,m, u′, v′, we set

znu,v =

{
1/∆n if u = v = 1

1 otherwise,

λ(u, v;m)nj,l =
3

2k3
n

(l−m−1)∨(2kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(u)nq+m, λ(u, v)nm = λ(u, v;m)n0,2kn ,

M(u, v;u′, v′)n = znu,vz
n
u′,v′

2kn−1∑
m=1

λ(u, v)nmλ(u′, v′)nm.

Additionally, set

A11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj

)
(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi

= λ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi , (A.5)

and

A12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+m

× ζgh(u)ni−mζab(v)ni .

(A.6)

B Auxiliary Lemmas and Theorems

This section presents useful auxiliary results, which are used in the proofs of Theorems 1 and 2. The results
of this section are proved in Section E below.

First, we explain why we can assume, without loss of generality, that the derivatives of functions Hr

and Gr are bounded, for r = 1, . . . , κ. Assumptions of Theorem 1 imply Lemma 2 of Li, Todorov, and
Tauchen (2017a). Therefore, we can assume that the variables Ĉi∆n

are bounded, uniformly over i ∈
{0, ..., [T/∆n]− kn + 1}, with probability approaching one. Using the spatial localization argument of Li,
Todorov, and Tauchen (2016), which in turn uses the spatial localization argument of Li, Todorov, and
Tauchen (2017a), we can assume that Hr and Gr are compactly supported without loss of generality. Hence,
the derivatives of functions Hr and Gr are bounded, for r = 1, . . . , κ.

Theorem B1. Let ̂[H(C), G(C)]
LIN ′

T and ̂[H(C), G(C)]
AN ′

T be the infeasible estimators obtained by replacing

Ĉni by Ĉ
′n
i in the definition of ̂[H(C), G(C)]

LIN

T and ̂[H(C), G(C)]
AN

T in equations (18) and (16). As long
as 3/4(2− r) ≤ $ < 1

2 , we have

∆−1/4
n

(
̂[H(C), G(C)]

LIN

T − ̂[H(C), G(C)]
LIN ′

T

)
P−→ 0
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and ∆−1/4
n

(
̂[H(C), G(C)]

AN

T − ̂[H(C), G(C)]
AN ′

T

)
P−→ 0. (B.7)

Theorem B1 allows, in particular, to focus on the derivation of the asymptotic distributions of

̂[H(C), G(C)]
LIN ′

T and ̂[H(C), G(C)]
AN ′

T . The next theorem connects the two estimators that we have intro-
duced. To state the theorem, define

̂[H(C), G(C)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

((
∂ghH∂abG

)
(Cni )

[
(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i )

− 2

kn
(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i )

])
.

with Cni = C(i−1)∆n
, and the superscript A stands for “approximated”. For simplicity, we do not index the

above quantity by a prime although it depends on Ĉ
′n
i instead of Ĉni .

Theorem B2. Under the assumptions of Theorem 1, we have

∆−1/4
n

(
̂[H(C), G(C)]

LIN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0 and

∆−1/4
n

(
̂[H(C), G(C)]

AN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0. (B.8)

Theorem B2 shows that the two estimators ̂[H(C), G(C)]
LIN ′

T and ̂[H(C), G(C)]
AN ′

T can be approximated

by a certain quantity with an error of approximation of order smaller than ∆
−1/4
n .

Now, we decompose the approximated estimator as follows

̂[H(C), G(C)]
(A)

T = ̂[H(C), G(C)]
(A1)

T − ̂[H(C), G(C)]
(A2)

T , (B.9)

with

̂[H(C), G(C)]
(A1)

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Cni−1)(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i ),

and

̂[H(C), G(C)]
(A2)

T =
3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Ĉ

′n
i )(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i ).

The following theorem holds:

Theorem B3. Under the assumptions of Theorem 1, we have

1

∆
1/4
n

(
̂[H(C), G(C)]

(A1)

T −
d∑

g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P

=⇒ 0.

Lemma B1. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, set ηt,s = ηt,s(Z). Then,

∆nE

(
[t/∆n]∑
i=1

ηi,kn

)
−→ 0, ∆nE

(
[t/∆n]∑
i=1

ηi,2kn

)
−→ 0,
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E

(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

(
[t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

Lemma B2. Let Z be a continuous Itô process with drift bZt and spot variance process CZt , and set ηt,s =
ηt,s(b

Z , cZ). Then, the following bounds hold:∣∣∣E(Zt

∣∣∣F0)− tbZ0
∣∣∣ ≤ Ktη0,t∣∣∣E(ZjtZ

k
t − tC

Z,jk
0

∣∣∣F0)
∣∣∣ ≤ Kt3/2(

√
∆n + η0,t)∣∣∣E((ZjtZkt − tCZ,jk0 )(CZ,lmt − CZ,lm0 )
∣∣∣F0

)∣∣∣ ≤ Kt2∣∣∣E(ZjtZ
k
t Z

l
tZ

m
t

∣∣∣F0)−∆2
n(CZ,jk0 CZ,lm0 + CZ,jl0 CZ,km0 + CZ,jm0 CZ,kl0 )

∣∣∣ ≤ Kt5/2∣∣∣E(ZjtZ
k
t Z

l
t

∣∣∣F0)
∣∣∣ ≤ Kt2∣∣∣E(

6∏
l=1

Zjlt

∣∣∣F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

C
Z,jljl′
0 C

Z,jkjk′
0 C

Z,jmjm′
0

∣∣∣ ≤ Kt7/2
E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (B.10)

(B.11)

Lemma B3. Let ζni be a r-dimensional Fni -measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and

E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤ Lq. Also, let ϕni be a real-valued Fni -measurable process with E

(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq

for q ≥ 2 and 1 ≤ j ≤ 2kn − 1. Then,

E

(∥∥∥∥∥
2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥∥∥
q∣∣∣∣∣Fni−1

)
≤ KqL

q
(
Lqk

q/2
n + L′qkqn

)
.

Lemma B4. Under the assumptions of Theorem 1, we have:∣∣∣∣∣E(λn,jki λn,lmi λn,ghi+2kn
λn,abi+2kn

∣∣∣∣∣Fni )− 4

k2
n

(
Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli

)
− 4∆n

3

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)
C
n,gh,ab

i − 4∆n

3

(
Cn,gai Cn,hbi − Cn,gbi Cn,hai

)
C
n,jk,lm

i

− 4(kn∆n)2

9
C
n,gh,ab

i C
n,jk,lm

i

∣∣∣∣∣ ≤ K∆n(∆1/8
n + ηni,4kn

)
.

Lemma B5. Under the assumptions of Theorem 1, we have:

∣∣∣E(νn,jki νn,lmi νn,ghi

∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,kn

)
, (B.12)

∣∣∣E(νn,jki νn,lmi

(
cn,ghi+kn

− cn,ghi

)∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,kn

)
, (B.13)

∣∣∣E(νn,jki

(
cn,lmi+kn

− cn,lmi

)(
cn,ghi+kn

− cn,ghi

)∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,kn

)
, (B.14)

∣∣∣E(νn,jki λn,lmi λn,ghi

∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,2kn

)
, (B.15)
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∣∣∣E(λn,jki λn,lmi λn,ghi

∣∣∣∣∣Fni )∣∣∣ ≤ K∆3/4
n

(
∆1/4
n + ηni,2kn

)
. (B.16)

Lemma B6. Under the assumptions of Theorem 1, we have:

1

∆
1/4
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′

ab(v)ni
P

=⇒ 0, ∀ (u, v) (B.17)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−

∫ T

0

(∂ghH∂abG)(Ct)C
gh,ab

t dt
)

P
=⇒ 0 when (u, v) = (2, 2) (B.18)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− 3

θ2

∫ T

0

(∂ghH∂abG)(Ct)(C
ga
t Chbt + Cgbt C

ha
t )dt

)
P

=⇒ 0 (B.19)

when (u, v) = (1, 1),

1

∆
1/4
n

A11(H, gh, u;G, ab, v)
P

=⇒ 0 when (u, v) = (1, 2), (2, 1) (B.20)

C Proof of Theorem 1

We now prove Theorem 1. By Theorem B3, we have

1

∆
1/4
n

(
̂[H(C), G(C)]

(A1)

T −
d∑

g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P

=⇒ 0.

Recalling the definition of A12(H, gh, u;G, ab, v)nT from equation (A.6), Lemma B6 implies that

1

∆
1/4
n

(
̂[H(C), G(C)]

(A)

T − [H(C), G(C)]T −
3

2k3
n

d∑
g,h,a,b

2∑
u,v=1

[T/∆n]∑
i=2kn[

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′′

ab(v)ni + (∂abH∂ghG)(Cni−2kn)ρab(v, u)ni ζ
′′

gh(v)ni

])
P

=⇒ 0. (C.21)

Next, define

ξ(H, gh, u;G, ab, v)ni =
1

∆
1/4
n

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′′
ab(v)ni ,

Z(H, gh, u;G, ab, v)nt = ∆1/4
n

[t/∆n]∑
i=2kn

ξ(H, gh, u;G, ab, v)ni .

Notice that (C.21) implies

1

∆
1/4
n

(
̂[H(C), G(C)]

(A)

T − [H(C), G(C)]T

)
L
=

d∑
g,h,a,b=1

2∑
u,v=1

1

∆
1/4
n

(
Z(H, gh, u;G, ab, v)nT

+ Z(H, ab, v;G, gh, u)nT

)
. (C.22)
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Next, observe that to derive the asymptotic distribution of
(

̂[H1(C), G1(C)]
(A)

T , . . . , ̂[Hκ(C), Gκ(C)]
(A)

T

)
, it

suffices to study the joint asymptotic behavior of the family of processes 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT . Notice

that ξ(H, gh, u;G, ab, v)ni are martingale increments relative to the discrete filtration (Fni ). Therefore, to
obtain the joint asymptotic distribution of 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT , it is enough to prove the following

three properties:

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)n
t

=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ξ(H
′, g′h′, u′;G′, a′b′, v′)ni |Fni−1)

P
=⇒ A

(
(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)

)
t
, (C.23)

[t/∆n]∑
i=2kn

E
(∣∣∣ξ(H, gh, u;G, ab, v

)n
i

∣∣∣4∣∣∣Fni−1)
P

=⇒ 0, and (C.24)

B(N ;H, gh, u;G, ab, v)nt :=

[t/∆n]∑
i=2kn

E
(
ξ(H, gh, u;G, ab, v)ni ∆n

i N |Fni−1

)
P

=⇒ 0, (C.25)

for all t > 0, all (H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′) and all martingales N which are either bounded
and orthogonal to W , or equal to one component W j .
Since the derivatives of Hr and Gr are bounded, equations (C.24) and (C.25) can be proved by an extension
of (B.105) and (B.106) in Aı̈t-Sahalia and Jacod (2014) to multivariate processes.
Next, define

V a
′b′

ab (v, v′)t =


(Caa

′

t Cbb
′

t + Cab
′

t Cba
′

t ) if (v, v′) = (1, 1)

C
ab,a′b′

t if (v, v′) = (2, 2)

0 otherwise,

and

V
g′h′

gh (u, u′)t =


(Cgg

′

t Chh
′

t + Cgh
′

t Chg
′

t ) if (u, u′) = (1, 1)

C
gh,g′h′

t if (u, u′) = (2, 2)

0 otherwise.

Using again the boundedness of the derivatives of Hr and Gr, we can show that

A
(

(H, gh, u;G, ab, v),(H ′, g′h′, u′;G′, a′b′, v′)
)
t

=

M(u, v;u′, v′)

∫ t

0

(∂ghH∂abG∂g′h′H∂a′b′G)(Cs)V
a′b′

ab (v, v′)sV
g′h′

gh (u, u′)sds,

with

M(u, v;u′, v′) =


3/θ3 if (u, v;u′, v′) = (1, 1; 1, 1)

3/4θ if (u, v;u′, v′) = (1, 2; 1, 2), (2, 1; 2, 1)

151θ/280 if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.
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Therefore, we have

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)
T

=



3
ν3

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

gg′

t Chh
′

t + Cgh
′

t Chg
′

t )(Caa
′

t Cbb
′

t + Cab
′

t Cba
′

t )dt,

if (u, v;u′, v′) = (1, 1; 1, 1)

3
4ν

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

gg′

t Chh
′

t + Cgh
′

t Chg
′

t )C
ab,a′b′

t dt, if (u, v;u′, v′) = (1, 2; 1, 2)
3
4ν

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

aa′

t Cbb
′

t + Cab
′

t Cba
′

s )t
gh,g′h′

s dt, if (u, v;u′, v′) = (2, 1; 2, 1)

151ν
280

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)C

ab,a′b′

s C
gh,g′h′

t dt, if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Using equation (C.22), we deduce that the asymptotic covariance between ̂[Hr(C), Gr(C)]
(A)

T and

̂[Hs(C), Gs(C)]
(A)

T is given by

d∑
g,h,a,b=1

d∑
g′,h′,a′,b′=1

2∑
u,v,u′,v′=1

(
A
(

(Hr, gh, u;Gr, ab, v), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, gh, u;Gr, ab, v), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

+A
(

(Hr, ab, v;Gr, gh, u), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, ab, v;Hr, gh, u), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

)
.

The above expression can be rewritten as

d∑
g,h,a,b=1

d∑
j,k,l,m=1

(
6

θ3

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt C

hk
t + Cgkt Chjt )(Calt C

bm
t + Camt Cblt )

+(Cajt C
bk
t + Cakt Cbjt )(Cglt C

hm
t + Cgmt Chlt )

]
dt

+
151θ

140

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk

C
ab,lm

+ C
ab,jk

C
gh,lm

]
dt

+
3

2θ

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt C

hk
t + Cgkt Chjt )C

ab,lm

t + (Calt C
bm
t + Camt Cblt )C

gh,jk

t

+(Cglt C
hm
s + Cgmt Chls )C

ab,jk

t + (Cajt C
bk
t + Cakt Cbjt )C

gh,lm

t

]
dt

)
,

which completes the proof.

D Proof of Theorem 2

Using boundedness of the derivatives of Hr, Gr, Hs and Gs and Theorem 2.2 in Jacod and Rosenbaum (2015),
one can show that

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T .
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Next, by equation (3.27) in Jacod and Rosenbaum (2015), we have

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T .

Finally, to show that

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T ,

we first observe that the approximation error induced by replacing Ĉni by Ĉ
′n
i in Theorem 2 is negligible.

For 1 ≤ g, h, a, b, j, k, l,m ≤ d and 1 ≤ r, s ≤ d, we define

Ŵn
T =

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂ghHs∂lmGs)(Ĉ
n
i )λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
,

ŵ(1)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )E(λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
|Fni ),

ŵ(2)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )(λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
− E(λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
|Fni )),

ŵ(3)ni =
(

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )− (∂ghHr∂abGr∂jkHs∂lmGs)(C

n
i )
)
λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
,

Ŵ (u)nt =

[T/∆n]−4kn+1∑
i=1

ŵi(u), u = 1, 2, 3.

Now, note that we also have Ŵn
t = Ŵ (1)nt + Ŵ (2)nt + Ŵ (3)nt . By Taylor expansion and using repeatedly

the boundedness of Ct, we obtain

|ŵ(3)ni | ≤ K‖νni ‖‖λni ‖2‖λni+2kn‖
2,

which implies E(|ŵ(3)ni |) ≤ K∆
5/4
n and hence Ŵ (3)nt

P−→ 0. Using Cauchy-Schwartz inequality and

the bound E(‖λni ‖q|Fni ) ≤ K∆
q/4
n , we have E(|ŵ(2)ni |2) ≤ K∆2

n. Observing furthermore that ŵ(2)ni is

Fi+4kn−measurable, Lemma B.8 in Aı̈t-Sahalia and Jacod (2014) implies Ŵ (2)nt
P−→ 0.

Next, define

wni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )
[ 4

k2
n∆n

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli )

+
4

3
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )C

n,gh,ab

i +
4

3
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )C

n,jk,lm

i

+
4(k2

n∆n)

9
C
n,gh,ab

i C
n,jk,lm

i

]
,

Wn
T = ∆n

[T/∆n]−4kn+1∑
i=1

wni .

Using the cadlag property of c and C, kn
√

∆n → θ, and the Riemann integral convergence, we conclude that

Wn
T

P−→WT where

WT =

∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)
[ 4

θ2
(Cgat Chbt + Cgbt C

ha
t )(Cjlt C

km
t + Cjmt Cklt )

+
4

3
(Cjlt C

km
t + Cjmt Cklt )C

gh,ab

t +
4

3
(Cgat Chbi + Cgbt C

ha
t )C

jk,lm

t +
4θ2

9
C
gh,ab

t C
jk,lm

t

]
dt.
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In addition, by Lemma B4, it holds that

E(|Ŵ (1)nT −Wn
T |) ≤ ∆nE

(
[T/∆n]−4kn+1∑

i=1

(∆1/8
n + ηi,4kn)

)
.

Hence, by the third result of Lemma B1 we have Ŵn
T

P−→Wt, from which it follows that

9

4θ2

[
Ŵ (1)nT +

4

k2
n

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )[Cni (jk, lm)Cni (gh, ab)]

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )Cni (gh, ab)λn,jki λn,lmi

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )Cni (jk, lm)λn,ghi λn,abi

]
P−→
∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)C
gh,ab

t C
jk,lm

t dt.

The result follows from the above convergence, the already invoked symmetry argument, and straightforward
calculations.

E Proofs of Auxiliary Lemmas and Theorems

This section is devoted to the proofs of the auxiliary theorems and lemmas (listed in Section B) that were
used to prove Theorem 1 and Theorem 2.

E.1 Proof of Theorem B1

To show this result, let us define the functions

R(x, y) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
ygh − xgh

)(
yab − xab

)
S(x, y) =

(
H(y)−H(x)

)(
G(y)−G(x)

)
U(x) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
xgaxhb + xgbxha

)
,

for any Rd × Rd matrices x and y. The following decompositions hold,

̂[H(C), G(C)]
AN

T − ̂[H(C), G(C)]
AN ′

T

=
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
S(Ĉni , Ĉ

n
i+kn)− S(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2

kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
,

̂[H(C), G(C)]
LIN

T − ̂[H(C), G(C)]
LIN ′

T

=
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
R(Ĉni , Ĉ

n
i+kn)−R(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2

kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
.
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By (3.11) in Jacod and Rosenbaum (2015), there exists a sequence of real numbers an converging to zero
such that

E(‖Ĉni − Ĉ
′n
i ‖q) ≤ Kqan∆(2q−r)$+1−q

n , for any q > 0. (E.26)

Since H and G are three times continuously differentiable with bounded derivatives, the functions R and S
are continuously differentiable and satisfy

‖∂J(x, y)‖ ≤ K for 1 ≤ g, h, a, b ≤ d and J ∈ {S,R}, (E.27)

‖∂U(x)‖ ≤ K, (E.28)

where ∂J (respectively, ∂U) is a vector that collects the first order partial derivatives of the function J
(respectively, U) with respect to all the elements of (x, y) (respectively, x). Using the Taylor expansion,
(E.27) and (E.28), it holds that, for J ∈ {S,R},

|J(Ĉni , Ĉ
n
i+kn)− J(Ĉ

′n
i , Ĉ

′n
i+kn)| ≤ K(‖Ĉni − Ĉ

′n
i ‖+ ‖Ĉni+kn − Ĉ

′n
i+kn‖) and

|U(Ĉni )− U(Ĉ
′n
i )| ≤ K(‖Ĉni − Ĉ

′n
i ‖).

By equation (E.26), the following condition is sufficient for Theorem B1 to hold:

(2− r)$ − 3

4
≥ 0.

Using the fact that 0 < $ < 1
2 , we can see that Theorem B1 holds when 3/4(2 − r) ≤ $ < 1

2 , which
completes the proof.

E.2 Proof of Theorem B2

Note that we have

̂[H(C), G(C)]
LIN ′

T − ̂[H(C), G(C)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

ψni (g, h, a, b),

̂[H(C), G(C)]
AN ′

T − ̂[H(C), G(C)]
A

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

(
χni −

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(Cni )λn,ghi λn,abi

)
,

with

ψni (g, h, a, b) =
((
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni )

)
λn,ghi λn,abi ,

χni =
(
H(Ĉ

′n
i+kn)−H(Ĉ

′n
i )
)(
G(Ĉ

′n
i+kn)−G(Ĉ

′n
i )
)
.

By Taylor expansion, we have

(
∂ghS∂abG

)
(Ĉ

′n
i )−

(
∂ghS∂abG

)
(Cni ) =

d∑
x,y=1

(
∂2
xy,ghS∂abG+ ∂2

xy,abG∂ghS
)

(Cni )νn,xyi

+
1

2

d∑
j,k,x,y=1

(
∂3
jk,xy,ghS∂abG+ ∂2

xy,ghS∂
2
jk,abG+ ∂3

jk,xy,abG∂ghS + ∂2
xy,abG∂

2
jk,ghS

)
(c̃ni )νn,xyi νn,jki

and

S(Ĉ
′n
i+kn)− S(Ĉ

′n
i ) =

∑
gh

∂ghS(Cni )λn,ghi +
∑
j,k,g,h

∂2
jk,ghS(Cni )λn,ghi νn,jki
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+
1

2

∑
x,y,g,h

∂2
xy,ghS(Cni )λn,ghi λn,xyi +

1

2

∑
x,y,j,k,g,h

∂3
xy,jk,ghS(CCn,Si )λn,ghi νn,xyi νn,jki

+
1

6

∑
j,k,x,y,g,h

∂3
jk,xy,ghS(Cn,Si )λn,jki λn,ghi λn,xyi ,

for S ∈ {H,G}, c̃ni = πCni + (1 − π)Ĉ
′n
i , Cn,Si = πSĈ

′n
i + (1 − πS)Ĉ

′n
i+kn

, CCn,Si = µSC
n
i + (1 − µS)Ĉ

′n
i

for π, πH , µH , πG, µG ∈ [0, 1]. Although c̃ni and π depend on g, h, a, and b, we do not emphasize this in our
notation to simplify the exposition.
Set Fni = F(i−1)∆n

. By (4.10) in Jacod and Rosenbaum (2013) we have

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∣∣∣q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (E.29)

Combining (E.29), (A.4), (B.10) with Z = c and the Hölder inequality yields for q ≥ 2,

E
(∥∥∥νni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥λni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (E.30)

The bound in the first equation of (E.30) is tighter than that in (4.11) of Jacod and Rosenbaum (2015)
due to the absence of volatility jumps. This tighter bound will be useful later in deriving the asymptotic
distribution for the approximated estimator. By the boundedness of Ct and the derivatives of H and G,∣∣∣(∂3

jk,xy,abG∂ghH + ∂2
xy,ghH∂

2
jk,abG

)
(c̃ni )νn,xyi νn,jki λn,ghi λn,abi

∣∣∣ ≤ K‖νni ‖2‖λni ‖2. (E.31)

Using the Taylor expansion, we have

χni −
∑
g,h,a,b

(∂ghH∂abG)(Cni )λn,ghi λn,abi =

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,xyG+ ∂ghG∂

2
jk,xyH)(Cni )(λn,ghi +

1

2
νn,ghi )λn,abi λn,jki + ϕni , and

∑
g,h,a,b

(
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni ) =

∑
g,h,a,b,x,y

(∂ghH∂
2
ab,xyG+ ∂abG∂

2
gh,xyG)(Cni )(νn,xyi )λn,ghi λn,abi + δni

with E(|ϕni |
∣∣Fni ) ≤ K∆n and E(|δni |

∣∣Fni ) ≤ K∆n which follow by the Cauchy-Schwartz inequality together

with equation (E.30). Given that kn = θ(∆n)−1/2, the previous inequalities imply

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

ϕni
P

=⇒ 0 and
3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

δni
P

=⇒ 0.

Therefore, it suffices to show that

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )λn,ghi λn,abi λn,jki

P−→ 0, (E.32)

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )νn,ghi λn,abi λn,jki

P−→ 0. (E.33)

These results hold by the bounds in Lemma B5.
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E.3 Proof of Theorem B3

First, we decompose the approximated estimator as

̂[H(C), G(C)]
(A)

T = ̂[H(C), G(C)]
(A1)

T − ̂[H(C), G(C)]
(A2)

T , (E.34)

with

̂[H(C), G(C)]
(A1)

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Cni−1)(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i ),

and

̂[H(C), G(C)]
(A2)

T =
3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Ĉ

′n
i )(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i ).

In this section, we use the notation Cni−1 = C(i−1)∆n
and Fi = F(i−1)∆n

to simplify the exposition. Given

the boundedness of the derivatives of H and G and the fact that kn = θ(∆n)−1/2, by Theorem 2.2 in Jacod
and Rosenbaum (2015) we have

1√
∆n

(
̂[H(C), G(C)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
= Op(1),

which yields

1

∆
1/4
n

(
̂[H(C), G(C)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
P−→ 0.

Using the multivariate quantities defined in Section A, we can show that the following decompositions hold:

Ĉ
′n
i = Cni−1 +

1

kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j , Ĉ
′n
i+kn − Ĉ

′n
i =

1

kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j ,

λn,ghi λn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j

+

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q +

2kn−1∑
j=1

j−1∑
q=0

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

)
.

Changing the order of the summation in the last term yields

λn,ghi λn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j

+

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q

)
.

Therefore, we can further rewrite ̂[H(C), G(C)]
(A1)

T as

̂[H(C), G(C)]
(A1)

T = ̂[H(C), G(C)]
(A11)

T + ̂[H(C), G(C)]
(A12)

T + ̂[H(C), G(C)]
(A13)

T ,with
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̂[H(C), G(C)]
(A1w)

T =

d∑
g,h,a,b=1

2∑
u,v=1

Â1w(H, gh, u;G, ab, v)nT , w = 1, 2, 3,

and

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−1∑
j=0

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q ,

Â13(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q ,

where we clearly have Â13(H, gh, u;G, ab, v)nT = Â12(G, ab, v;H, gh, u)nT . By a change of the order of the
summation,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=1

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)

× (Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)

× ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni .

Now, set

Ã11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

2kn−1∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Ã12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

(∂ghH∂abG)(Cni−j−1−m)ε(u)nj ε(v)nj+m

×ζgh(u)ni−mζab(v)ni ,

and

A11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj

)
(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi

= λ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi ,

A12(H, gh, u;G, ab, v)nT

=
3

2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni

=

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζab(v)ni ,
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with

ρgh(u, v)ni =

2kn−1∑
m=1

λ(u, v)nmζgh(u)ni−m.

We show below that the following results hold:

1

∆
1/4
n

(
Â1w(H, gh, u;G, ab, v)nT − Ã1w(H, gh, u;G, ab, v)nT

)
P−→ 0 (E.35)

1

∆
1/4
n

(
Ã1w(H, gh, u;G, ab, v)nT −A1w(H, gh, u;G, ab, v)nT

)
P−→ 0 (E.36)

for all (H, gh, u,G, ab, v) and w = 1, 2.

E.3.1 Proof of Equation (E.35) for w = 1

To prove this result, first, notice that the ζ(u)n,ghi ζ(v)n,abi are scaled by random variables rather that constant
real numbers. Next, observe that we can write

Â11− Ã11 =
˜̂
A11(1) +

˜̂
A11(2) +

˜̂
A11(3) with

˜̂
A11(1) =

(2kn−1)∧[T/∆n]∑
i=1

(
3

2k3
n

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(3) =

[T/∆n]−2kn+1∑
i=2kn

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi .

It is easy to see that
˜̂
A12(3) = 0. Using equation (B.10) with Z = c and equation (E.29), we obtain

E(‖ζ(1)ni ‖q|Fni−1) ≤ Kq, E(‖ζ(2)ni ‖q|Fni−1) ≤ Kq∆
q/2
n . (E.37)

By the boundedness of the derivatives of H and G, the random quantities(
3

2k3n

∑(2kn−1)∧(i−1)
j=0∨(i+2kn−1−[T/∆n])(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
and

3
2k3n

∑(2kn−1)
j=0 (∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj are Fni−1− measurable and are bounded by λ̃nu,v defined as

λ̃nu,v =


K if (u, v) = (2, 2)

K/kn if (u, v) = (1, 2), (2, 1)

K/k2
n if (u, v) = (1, 1).
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Similarly, the quantity

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj −
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
,

is Fni−1− measurable and bounded by 2λ̃nu,v. Note also that, by equation (E.37) and the Cauchy Schwartz
inequality, we have

E(|ζ(u)n,ghi ζ(v)n,abi |
∣∣Fni−1) ≤ E(‖ζ(u)ni ‖2|Fni−1)1/2E(‖ζ(v)ni ‖2|Fni−1)1/2

≤


K∆n if (u, v) = (2, 2)

K∆
1/2
n if (u, v) = (1, 2), (2, 1)

K if (u, v) = (1, 1).

The above bounds, together with the fact that kn = θ∆
−1/2
n , imply E(|˜̂A11(1)|) ≤ K∆

1/2
n and E(|˜̂A11(2)|) ≤

K∆
1/2
n for all (u, v). These two results together imply

˜̂
A11(1) = o(∆

−1/4
n ) and

˜̂
A11(2) = o(∆

−1/4
n ), which

yields the result.

E.3.2 Proof of Equation (E.35) for w = 2

First, observe that Â12− Ã12 =
˜̂
A12(1) +

˜̂
A12(2), with

˜̂
A12(1) =

(2kn−1)∧[T/∆n]∑
i=2

(
(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

× ζgh(u)ni−m

)
ζab(v)ni ,

˜̂
A12(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

(
(i−1)∧(2kn−1)∑

m=1

( 3

2k3
n

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj

× ε(v)nj+m

)
−

(2kn−m−1)∑
j=0

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m

)
ζab(v)ni .

Notice that the quantity

κm,ni =
3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

is Fni−m−1 measurable and bounded by λ̃nu,v. Let

κni =

(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m.

It follows that κni is Fni−1-measurable and we have

E(|κm,ni |z
∣∣F0) ≤ (λ̃nu,v)

z,

|E(ζ(u)ni−m|Fi−m−1)| ≤

{
K
√

∆n if u = 1

K∆n if u = 2
,
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E(‖ζ(u)ni−m‖z|Fi−m−1) ≤

{
Kz if u = 1

Kz∆
z/2
n if u = 2

.

Using Lemma B3, we deduce that for z ≥ 2,

E(|κni |z) ≤

{
Kz(λ̃

n
u,v)

zk
z/2
n if u = 1

Kz(λ̃
n
u,v)

z/k
z/2
n if u = 2

≤

{
Kz/k

−3z/2
n if v = 1

Kzk
−z/2
n if v = 2

.

Using the above result, we obtain 1

∆
1/4
n

˜̂
A12(1)

P⇒ 0. A similar argument yields 1

∆
1/4
n

˜̂
A12(2)

P⇒ 0, which

completes the proof of the equation (E.35) for w = 2.

E.3.3 Proof of Equation (E.36) for w = 1

Define

Θ(u, v)
(C),i,n
0 =

3

2k3
n

2kn−1∑
j=0

(
(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)

)
ε(u)nj ε(v)nj .

By Taylor expansion, boundedness of the derivatives of H and G, and using (B.10) with Z = c, we have∣∣∣E((∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)
∣∣Fni−2kn

)∣∣∣ ≤ K(kn∆n) ≤ K
√

∆n

E(|(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)|q|Fni−2kn)| ≤ K(kn∆n)q/2 ≤ K∆q/4
n ,

for q ≥ 2 and for j = 0, . . . , 2kn − 1. Next, observe that Θ(u, v)
(C),i,n
0 is Fni−1 -measurable and sat-

isfies |Θ(u, v)
(C),i,n
0 | ≤ λ̃nu,v, |E

(
Θ(u, v)

(C),i,n
0 |Fni−2kn

)
| ≤ K∆

1/2
n λ̃nu,v and E

(
|Θ(u, v)

(C),i,n
0 |q

∣∣Fni−2kn

)
≤

Kq∆
q/4
n (λ̃nu,v)

q where the latter follows from the Hölder inequality. We aim to prove that

Ê =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 ζ(u)n,ghi ζ(v)n,abi

]

converges to zero in probability for any H, G, g, h, a, and b with u, v = 1, 2.
To show this result, we first introduce the following quantities:

Ê(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

]

Ê(2) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
,

with Ê = Ê(1) + Ê(2). By Cauchy-Schwartz inequality, we have

E(|ζ(u)n,ghi ζ(v)n,abi |q) ≤ (λ̂nu,v)
q/2,where λ̂nu,v =


K if (u, v) = (1, 1)

K∆n if (u, v) = (1, 2), (2, 1)

K∆2
n if (u, v) = (2, 2)

Since ζ(u)n,ghi ζ(v)n,abi is Fni -measurable,

the martingale property of ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1) implies, for all (u, v),

E(|Ê(2)|2) ≤ K∆−3/2
n (∆1/4

n λ̃nu,v)
2λ̂nu,v ≤ K∆n.
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The latter inequality implies Ê(2)
P⇒ 0 for all (u, v). It remains to show that Ê(1)

P⇒ 0.
Here, we recall some bounds under Assumption 2,

|E(ζ(1)n,ghi ζ(2)n,abi |Fni−1)| ≤ K∆n, (E.38)

|E(ζ(1)n,ghi ζ(1)n,abi |Fni−1)−
(
Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1

)
| ≤ K∆1/2

n , (E.39)

|E(ζ(2)n,ghi ζ(2)n,abi |Fni−1 − C
n,gh,ab

i−1 ∆n)| ≤ K∆3/2
n (

√
∆n + ηni ). (E.40)

Case (u, v) ∈ {(1, 2), (2, 1)}. By equation (E.38) we have

E(|Ê(1)|) ≤ K T

∆n

1

∆
1/4
n

(∆1/4
n λ̃nu,v∆n) ≤ K∆1/2

n so Ê(1)
P⇒ 0.

Case (u, v) ∈ {(1, 1), (2, 2)}. Set

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 V ni−2kn

]

Ê′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
V ni−1 − V ni−2kn

)]

Ê′′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)]

where

V ni−1 =


Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1 if (u, v) = (2, 2)

C
n,gh,ab

i−1 ∆n if (u, v) = (1, 1)

0 otherwise

Note that we have Ê(1) = Ê′(1) + Ê′′(1) + Ê′′′(1). Using equations (E.39) and (E.40), it can be shown that

E(|Ê′′′(1)|) ≤

K
1

∆
5/4
n

(∆
1/4
n λ̃nu,v)∆

1/2
n if (u, v) = (1, 1)

K 1

∆
5/4
n

(∆
1/4
n λ̃nu,v)∆

3/2
n if (u, v) = (2, 2)

≤ K∆1/2
n in all cases.

Next, we prove Ê′(1)
P⇒ 0. To this end, write

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

]
.

Using the Fni+2kn−2-measurability of the last sum, we are able to show

1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

|E(Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)|

]
P⇒ 0 and

2kn − 2

∆
1/2
n

[
[T/∆n]−2kn+1∑

i=1

E
(
|Θ(u, v)

(C),i−1+2kn,n
0 V(i−1)∆n

)|2
)]
⇒ 0.

The first result readily follows from the inequality

|E(Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)| ≤

{
K∆

1/2
n λ̃nu,v if (u, v) = (1, 1)

K∆
1/2
n λ̃nu,v∆n if (u, v) = (2, 2)

≤ K∆3/2
n in all cases,
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while the second is a direct consequence of

E(|Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|2) ≤

{
K∆

1/2
n (λ̃nu,v)

2 if (u, v) = (1, 1)

K∆
1/2
n (λ̃nu,v)

2∆2
n if (u, v) = (2, 2)

≤ K∆5/2
n in all cases.

Finally, to prove that Ê′′(1)
P

=⇒ 0, we use the fact that

E(|Θ(u, v)
(C),i,n
0

(
V(i−1)∆n

− V(i−2kn)∆n

)
|) ≤ E(|Θ(u, v)

(C),i,n
0 |2)1/2E(|V(i−1)∆n

− V(i−2kn)∆n
|2)1/2

≤

{
K∆

1/2
n λ̃nu,v if (u, v) = (1, 1)

K∆
1/4
n λ̃nu,v∆n∆

1/4
n if (u, v) = (2, 2)

,

which follows from the Cauchy-Schwartz inequality and earlier bounds. In particular, successive conditioning
together with Assumption 2 imply that for (u, v) = (1, 1) and (2, 2),

E(|V(i−1)∆n
− V(i−2kn)∆n

|2) ≤ ∆
1/2
n .

E.3.4 Proof of Equation (E.36) for w = 2

Our aim here is to show that

Ê(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

(
2kn−1∑
m=1

( 3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

)
×

ζ(u)n,ghi−m

)
ζ(v)n,abi

P
=⇒ 0.

For this purpose, we introduce some new notation. For any 0 ≤ m ≤ 2kn − 1, set

Θ(u, v)(C),i,n
m =

3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

ρ(u, v)(C),i,n,gh =

2kn−1∑
m=1

Θ(u, v)(C),i,n
m ζ(u)n,ghi−m.

It is easy to see that Θ(u, v)
(C),i,n
m is Fni−m−1 measurable and satisfies, by Hölder inequality,

|Θ(u, v)(C),i,n
m | ≤ λ̃nu,v and E

(
|Θ(u, v)(C),i,n

m |q
∣∣Fni−2kn

)
≤ Kq∆

q/4
n (λ̃nu,v)

q.

Lemma B3 implies that for q ≥ 2,

E(|ρ(u, v)(C),i,n,gh|q) ≤

{
Kq(∆

1/4
n λ̃nu,v)

qk
q/2
n if u = 1

Kq(∆
1/4
n λ̃nu,v)

q/k
q/2
n if u = 2

≤

{
Kq/k

2q
n if v = 1

Kqk
q
n if v = 2

. (E.41)

Set

Ê′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,ghE(ζ(v)n,abi |Fni−1),

Ê′′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,gh(ζ(v)n,abi − E(ζ(v)n,abi |Fni−1)).

56



The martingale increments property implies E(|Ê′′(2)|2) ≤ K∆
1/2
n in all the cases, which in turn implies

Ê′′(2)
P

=⇒ 0. Next, using the bounds on ρ(u, v)(C),i,n,gh, we obtain that Ê′(2)
P

=⇒ 0.
We refer to Jacod and Rosenbaum (2015) for the proofs of Lemma B1 and Lemma B2.

E.4 Proof of Lemma B3

Set

ξni = ϕni−1ζ
n
i , ξ

′n
i = E(ξi|Fni−1) = E(ϕni−1ζ

n
i |Fni−1) = ϕni−1E(ζni |Fni−1), and ξ

′′n
i = ξni − ξ

′n
i .

Given that ‖E(ζni |Fni−1)‖ ≤ L′, we have ‖ξ′n
i ‖ ≤ L′|ϕni−1|. By the convexity of the function xq, which holds

for q ≥ 2, we have

‖
2kn−1∑
j=1

ξni+j‖q ≤ K
(
‖

2kn−1∑
j=1

ξ
′n
i+j‖q + ‖

2kn−1∑
j=1

ξ
′′n
i+j‖q

)
.

Therefore, on the one hand we have

‖
2kn−1∑
j=1

ξ
′n
i+j‖q ≤ Kkq−1

n

2kn−1∑
j=1

‖ξ
′n
i+j‖q ≤ Kkq−1

n L′q
2kn−1∑
j=1

|ϕni+j−1|q,

which by E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq, satisfies

E(‖
2kn−1∑
j=1

ξ
′n
i+j‖q|Fni−1) ≤ KL′qkq−1

n

2kn−1∑
j=1

E(|ϕni+j−1|q|Fni−1) ≤ KL′qkqnLq.

On the other hand, we have E(‖ξ′′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqL

q and E(ξ
′′n
i+j |Fni−1) = 0, where the

first inequality is a consequence of E(‖ξ′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqL

q, which follows from the
Jensen’s inequality and the law of iterated expectation. Hence, by Lemma B.2 of Aı̈t-Sahalia and Jacod
(2014) we have

E(‖
2kn−1∑
j=1

ξ
′′n
i+j‖q|Fni−1) ≤ KqL

qLqk
q/2
n .

To see the latter, we first prove that the required condition E(‖ξni ‖q|Fni−1) ≤ LqL
q) in the Lemma B.2 of

Aı̈t-Sahalia and Jacod (2014) can be replaced by E(‖ξni+j‖q|Fni−1) ≤ LqL
q) for 1 ≤ j ≤ 2kn − 1 without

altering the result.

E.5 Proof of Lemma B4

We use the terminology “successive conditioning” to refer to either of the following two equalities,

x1y1 − x0y0 = x0(y1 − y0) + y0(x1 − x0) + (x1 − x0)(y1 − y0),

x1y1z1 − x0y0z0 = x0y0(z1 − z0) + x0z0(y1 − y0) + y0z0(x1 − x0) + x0(y0 − y1)(z0 − z1)

+y0(x0 − x1)(z0 − z1) + z0(x0 − x1)(y0 − y1) + (x1 − x0)(y1 − y0)(z1 − z0),

which hold for any real numbers x0, y0, z0, x1, y1, and z1.
To prove Lemma B4, we first note that λn,jki λn,lmi is Fni+2kn

-measurable. Therefore, by the law of iterated
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expectations, we have

E
(
λn,jki λn,lmi λn,ghi+2kn

λn,abi+2kn
|Fni

)
= E

(
λn,jki λn,lmi E

(
λn,ghi+2kn

λn,abi+2kn
|Fni+2kn

)
|Fni

)
.

By equation (3.27) in Jacod and Rosenbaum (2015), we have

|E(λn,ghi+2kn
λn,abi+2kn

|Fni+2kn)− 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
)− 2kn∆n

3
C
n,gh,ab

i+2kn |

≤ K
√

∆n(∆1/8
n + ηni+2kn,2kn), and

|E(λn,jki λn,lmi |Fni )− 2

kn
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )− 2kn∆n

3
C
n,jk,lm

i | ≤ K
√

∆n(∆1/8
n + ηni,2kn).

From the above, it follows that

|E
(
λn,jki λn,lmi

[
E(λn,ghi+2kn

λn,abi+2kn

∣∣∣Fni+2kn)− 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
)− 2kn∆n

3
C
n,gh,ab

i+2kn

]∣∣∣∣∣Fni )|
≤
√

∆nE(|λn,jki ||λn,lmi |(∆1/8
n + ηni+2kn,2kn)|

∣∣∣Fni ) ≤ K
√

∆n∆1/8
n E(|λn,jki ||λn,lmi |

∣∣∣Fni )

+K
√

∆nE(|λn,jki ||λn,lmi |ηni+2kn,2kn |
∣∣∣Fni ) ≤ K∆n(∆1/8

n + ηni,4kn),

where the last inequality follows from Lemma B1.
Now, using equation (B.10) successively with Z = c and Z = C (recall that the latter holds under Assumption
2), together with the successive conditioning, we also have

|E
(
λn,jki λn,lmi

[ 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
) +

2kn∆n

3
C
n,gh,ab

i+2kn −
2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )

− 2kn∆n

3
C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n∆1/4
n ,

|E
(
λn,jki λn,lmi

[ 2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )

+
2kn∆n

3
C
n,gh,ab

i

]
−
[ 2

kn
(Cn,jli Cn,kmi + Cn,jmi Cn,kli ) +

2kn∆n

3
C
n,jk,lm

i

]
×
[ 2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai ) +

2kn∆n

3
C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n(∆1/8
n + ηni,2kn).

The result derives from the last inequality.

E.5.1 Proof of Equation (B.12) in Lemma B5

We start by obtaining some useful bounds for some important quantities. First, using the second statement
in Lemma B2 applied to Z = Y ′, we have

|E(αn,jki |Fni )| ≤ K∆3/2
n (

√
∆n + ηni,1). (E.42)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last
statements in Lemma B2 as well as equation (B.10) with Z = c, it can be shown that∣∣∣E(αn,jki αn,lmi |Fni )−∆2

n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n . (E.43)
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Next, by successive conditioning and using the bound in equation (B.10) for Z = c as well as equations
(E.42) and (E.43), we have for 0 ≤ u ≤ kn − 1,∣∣∣E(αn,jki+u

∣∣Fni )
∣∣∣ ≤ K∆3/2

n (
√

∆n + ηni,u), (E.44)

∣∣∣E(αn,jki+u α
n,lm
i+u |F

n
i )−∆2

n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n . (E.45)

To show equation (B.12), we first observe that νn,jki νn,lmi νn,ghi can be decomposed as

νn,jki νn,lmi νn,ghi =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u +
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,v + ζn,ghi,u ζn,jki,v ζn,lmi,v

+ ζn,lmi,u ζn,ghi,v ζn,jki,v

]
+

1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[ζn,jki,u ζn,lmi,u ζn,ghi,v + ζn,ghi,u ζn,jki,u ζn,lmi,v + ζn,lmi,u ζn,ghi,u ζn,jki,v

]

+
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,w + ζn,jki,u ζn,ghi,v ζn,lmi,w + ζn,lmi,u ζn,jki,v ζn,ghi,w + ζn,lmi,u ζn,ghi,v ζn,jki,w

+ ζn,ghi,u ζn,lmi,v ζn,jki,w + ζn,ghi,u ζn,jki,v ζn,lmi,w

]
,

with ζni,u = αni+u + (Cni+u − Cni )∆n, which satisfies E(‖ζni,u‖q|Fni ) ≤ K∆q
n for q ≥ 2.

Set

ξni (1) =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u , ξni (2) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,v ζn,ghi,v

ξni (3) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,u ζn,ghi,v and ξni (4) =
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

ζn,jki,u ζn,lmi,v ζn,ghi,w .

The following bounds can be established,

|E(ξni (1)|Fni )| ≤ K∆n (E.46)

|E(ξni (2)|Fni )| ≤ K∆n (E.47)

|E(ξni (3)|Fni )| ≤ K∆n (E.48)

|E(ξni (4)|Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn). (E.49)

E.5.2 Proof of Equation (E.46)

The result readily follows from an application of the Cauchy Schwartz inequality coupled with the bound
E(‖ζni+u‖q|Fni ) ≤ Kq∆

q
n for q ≥ 2.

E.5.3 Proof of Equation (E.47)

Using the law of iterated expectation, we have, for u < v,

E(ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u E(ζn,lmi+v ζ

n,gh
i+v |F

n
i+u+1)

∣∣Fni ). (E.50)

By successive conditioning, equation (E.43), and the Cauchy-Schwartz inequality, we also have

|E(ζn,lmi,v ζn,ghi,v |F
n
i+u+1)−∆2

n(Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)

−∆2
n(Cn,ghi+u+1 − C

n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )| ≤ K∆5/2

n .
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Given that E(|ζn,jki+u |q
∣∣Fni ) ≤ ∆q

n, the approximation error involved in replacing E(ζn,lmi+v ζ
n,gh
i+v |Fni+u+1) by

∆2
n(Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1) + ∆2

n(Cn,ghi+u+1 − C
n,gh
i )(Cn,lmi+u+1 − C

n,lm
i ) in equation (E.50) is smaller

than ∆
7/2
n .

We can also easily show that

|E(αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )|Fni )| ≤ K∆3/2

n (
√

∆n + ηni,kn). (E.51)

Since (Cni+u − Cni ) is Fni+u-measurable, we use the successive conditioning, the Cauchy-Schwartz inequality,
equation (E.42), equation (E.43), and the fifth statement in Lemma B2 applied to Z = c to obtain

|E(αn,ghi+u (Cn,lmi+u − C
n,lm
i )(Cn,jki+u − C

n,jk
i )|Fni )| ≤ K∆5/2

n

|E(αn,jki+u α
n,lm
i+u (Cn,ghi+u − C

n,gh
i )|Fni )| ≤ K∆5/2

n (E.52)

|E
(
(Cn,lmi+u − C

n,lm
i )(Cn,jki+u − C

n,jk
i )(Cn,ghi+u − C

n,gh
i )

)
|Fni )| ≤ K∆n.

The following inequalities can be established using equation (E.42), the successive conditioning together with
equation (B.10) for Z = c,∣∣∣E(αn,jki+u (Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)|Fni )

∣∣∣ ≤ K∆3/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )

(
Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1

)
|Fni

)∣∣∣ ≤ K∆1/2
n∣∣∣E(αn,jki+u (Cn,ghi+u+1 − C

n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )|Fni )

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni,kn).

The last three inequalities together yield |E(ξni (2)|Fni )| ≤ K∆n.

E.5.4 Proof of Equation (E.48)

First, note that, for u < v, we have

E(ζn,jki+u ζ
n,lm
i+u ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u ζ

n,lm
i+u E(ζn,ghi+v |F

n
i+u+1)

∣∣Fni ). (E.53)

By successive conditioning and equation (E.42), we have

|E(αn,ghi+w |F
n
i+v+1)| ≤ K∆3/2

n (
√

∆n + ηi+v+1,w−v). (E.54)

Using the first statement of Lemma applied to Z = c, it can be shown that

|E
(
(Cn,ghi+w − C

n,gh
i+v+1))|Fni

)
−∆n(w − v − 1)̃bn,ghi+v+1|

≤ K(w − v − 1)∆nηi+v+1,w−v ≤ K∆1/2
n ηi+v+1,w−v.

The last two inequalities together imply∣∣∣E(ζn,ghi+w |F
n
i+v+1

)
− (Cn,ghi+v+1 − C

n,gh
i )∆n −∆2

n(w − v − 1)̃bn,ghi+v+1

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηi+v+1,w−v). (E.55)

Since E(|ζn,jki,u |q|Fni ) ≤ ∆q
n, the error induced by replacing E(ζn,ghi+v |Fni+u+1) by (Cn,ghi+v+1−C

n,gh
i )∆n+∆2

n(w−
v − 1)̃bn,ghi+v+1 in equation (E.53) is smaller that ∆

7/2
n .

Using Cauchy Schwartz inequality, successive conditioning, equation (E.52), equation (B.10) for Z = c and

the boundedness of b̃t and Ct we obtain∣∣∣E(αn,jki+u α
n,lm
i+u (Cn,jki+u+1 − C

n,gh
i )|Fni+u

)∣∣∣ ≤ K∆5/2
n∣∣∣E(αn,jki+u α

n,lm
i+u b̃

n,gh
i+u+1|F

n
i+u

)∣∣∣ ≤ K∆2
n
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∣∣∣E(αn,jki+u (Cn,lmi+u − C
n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆1/4
n ∆3/2

n (
√

∆n + ηni,kn)∣∣∣E(αn,jki+u (Cn,lmi+u − C
n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ ∆5/4
n∣∣∣E((Cn,jki+u − C

n,gh
i )(Cn,lmi+u − C

n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ K∆1/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆n.

The above inequalities together yield |E(ξni (3)|Fni )| ≤ K∆n.

E.5.5 Proof of Equation (E.49)

We first observe that ξni (4) can be rewritten as

ξni (4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w ,

where

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w =

[
αn,jki+u α

n,lm
i+v α

n,gh
i+w + αn,jki+u ∆nα

n,lm
i+v (Cn,ghi+w − C

n,gh
i ) + αn,jki+u ∆n(Cn,lmi+v − C

n,lm
i )αn,ghi+w

+ ∆2
nα

n,jk
i+u (Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ) + ∆n(Cn,jki+u − C

n,jk
i )αn,lmi+v α

n,gh
i+w

+ ∆2
n(Cn,jki+u − C

n,jk
i )αn,lmi+v (Cn,ghi+w − C

n,gh
i ) + ∆2

n(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )αn,ghi+w

+ ∆3
n(Cn,jki+u − C

n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i )

]
.

Based on the above decomposition, we set

ξni (4) =

8∑
j=1

χ(j),

with χ(j) defined below. We aim to show that |E(χ(j)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn), j = 1, . . . , 8.

First, set

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u α
n,lm
i+v α

n,gh
i+w .

Upon changing the order of the summation, we have

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v α

n,gh
i+w .

Define also

χ′(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1).
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Note that E(χ(1)|Fni ) = E(χ′(1)|Fni ).
By Lemma B3, we have for q ≥ 2,

E
(∥∥∥ v−1∑

u=0

αn,jki+u

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n .

The Cauchy-Schwartz inequality yields

E

(∣∣∣ kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1)

∣∣∣∣∣∣∣∣Fni
)
≤ Kk2

n

[
E
(∣∣∣ v−1∑

u=0

αn,jki+u

∣∣∣4∣∣∣Fni )]1/4
×
[
E
(∣∣∣αn,lmi+v

∣∣∣4∣∣∣Fni )]1/4 × [E(∣∣∣E(αn,ghi+w |F
n
i+v+1)

∣∣∣2∣∣∣Fni )]1/2 ≤ K∆nk
2
n∆3/4

n ∆3/2
n (

√
∆n + ηni,kn),

where the last iteration is obtained using equation (E.54) as well as the inequality (a+ b)1/2 ≤ a1/2 + b1/2,
which holds for positive real numbers a and b, and the third statement in Lemma B1. It follows that

|E
(
χ(1)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we introduce

χ(2) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v α

n,gh
i+w ,

χ(3) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+v

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w ,

χ(4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w .

Given that for q ≥ 2, we have

E
(∥∥∥ v−1∑

u=0

∆n(Cn,jki+u − C
n,jk
i )

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n and E(‖Cn,jki+u − C

n,jk
i ‖q

∣∣Fni ) ≤ Kq∆
q/4
n .

Similar steps to χ(1) lead to

|E(χ(2)
∣∣Fni )| ≤ K∆3/4

n (
√

∆n + ηni,kn) and |E(χ(j)
∣∣Fni )| ≤ K∆n(

√
∆n + ηni,kn) for j = 3, 4.

Define

χ(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ′(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆nE

(
(Cn,ghi+w − C

n,gh
i )

∣∣Fni+v+1)

χ(6) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i ),

62



where we have E(χ(5)|Fni ) = E(χ′(5)|Fni ). Recalling equation (E.55), we further decompose χ′(5) as,

χ′(5) =

5∑
j=1

χ(5)[j],

with

χ′(5)[1] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

(
E
(
Cn,ghi+w − C

n,gh
i |Fni+v+1

)
− (Cn,ghi+v+1 − C

n,gh
i )∆n − b̃n,ghi+v+1∆2

n(w − v − 1)
)

χ′(5)[2] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆n(Cn,ghi+v − C
n,gh
i )

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

χ′(5)[3] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,ghi+v+1 − C

n,gh
i+v )αn,lmi+v

χ′(5)[4] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆2
n(w − v − 1)(̃bn,ghi+v+1 − b̃

n,gh
i+v )αn,lmi+v

χ′(5)[5] =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v .

Using equations (E.55), (E.54), and (E.51) and following the same strategy proof as for χ(1), it can be shown
that

|E
(
χ′(5)[j]

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5,

which in turn implies

|E
(
χ(5)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5.

The term χ(6) can be handled similarly to χ(5), hence we conclude that

|E
(
χ(6)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we set

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i )

)
.

Define

χ(7)[1] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v+1 − C

n,gh
i+v )

)

χ(7)[2] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v − C

n,gh
i )

)

χ(7)[3] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆2

n(w − v − 1)(̃bn,ghi+v+1 − b̃
n,gh
i+v )

)
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χ(7)[4] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )

)
.

It is easy to see that

χ(7) =

4∑
j=1

χ(7)[j].

Similarly to calculations used for χ(1), it can be shown that

|E(χ(7)[j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 3.

To handle the remaining term χ(7)[4], we decompose it χ(7)[4] =
∑9
j=1 χ(7)[4][j], where

χ(7)[4][1] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )

χ′(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )E(αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )|Fni+u)

χ(7)[4][3] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][4] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )(Cn,ghi+u − C

n,gh
i )αn,jki+u

χ(7)[4][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+v − C

n,gh
i+u+1)

χ′(7)[2][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u E((Cn,ghi+v − C

n,gh
i+u+1|F

n
i+u)

χ(7)[4][6] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u+1)

χ(7)[4][7] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][8] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,ghi+u+1 − C
n,gh
i+u )(Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][9] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+v − C
n,lm
i+u+1)(Cn,ghi+v − C

n,gh
i+u+1).

Using arguments similar to those involved for the treatment of χ(1), it can be shown that

|E(χ(7)[4][j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 8,
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which yields

|E(χ(7)
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn).

Next, define

χ(8) =
1

k3
n

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ).

This term can be further decomposed into six components. Successive conditioning and existing bounds give

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn)

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

These bounds can be used to deduce

|E(χ(8)
∣∣Fni )| ≤ K∆n.

This completes the proof.

E.5.6 Proof of Equations (B.13) and (B.14) in Lemma B5

Observe that

νn,jki (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ) =
1

kn∆n

kn−1∑
u=0

ζn,jki,u (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ),

νn,jki νn,lmi (Cn,ghi+kn
− Cn,ghi ) =

1

k2
n∆2

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u (Cn,ghi+kn
− Cn,ghi )

+
1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,jki,u ζn,lmi,v (Cn,ghi+kn
− Cn,ghi ) +

1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,lmi,u ζn,jki,v (Cn,ghi+kn
− Cn,ghi ).

Hence, equations (B.13) and (B.14) can be proved using the same strategy as for (B.12).

E.5.7 Proof of Equations (B.15) and (B.16) in Lemma B5

Note that we have

λn,jki λn,lmi νn,ghi = νn,ghi νn,jki+kn
νn,lmi+kn

+ νn,ghi νn,jki νn,lmi − νn,ghi νn,lmi νn,jki+kn
− νn,ghi νn,lmi νn,jki+kn

+ νn,ghi νn,jki+kn
(Cn,lmi+kn

− Cn,lmi )− νn,ghi νn,jki (Cn,lmi+kn
− Cn,lmi ) + νn,ghi νn,lmi+kn

(Cn,jki+kn
− Cn,jki )

− νn,ghi νn,lmi (Cn,jki+kn
− Cn,jki ) + νn,ghi (Cn,jki+kn

− Cn,jki )(Cn,lmi+kn
− Cn,lmi ),

and

λn,ghi λn,jki λn,lmi = νn,ghi+kn
νn,jki+kn

νn,lmi+kn
+ νn,ghi+kn

νn,jki νn,lmi − νn,ghi+kn
νn,lmi νn,jki+kn

− νn,ghi+kn
νn,lmi νn,jki+kn
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+νn,ghi+kn
νn,jki+kn

(Cn,lmi+kn
− Cn,lmi )− νn,ghi+kn

νn,jki (Cn,lmi+kn
− Cn,lmi ) + νn,ghi+kn

νn,lmi+kn
(Cn,jki+kn

− Cn,jki )

−νn,ghi+kn
νn,lmi (Cn,jki+kn

− Cn,jki ) + νn,ghi+kn
(Cn,jki+kn

− Cn,jki )(Cn,lmi+kn
− Cn,lmi )

−νn,ghi νn,jki+kn
νn,lmi+kn

− νn,ghi νn,jki νn,lmi + νn,ghi νn,lmi νn,jki+kn
+ νn,ghi νn,lmi νn,jki+kn

−νn,ghi νn,jki+kn
(Cn,lmi+kn

− Cn,lmi ) + νn,ghi νn,jki (Cn,lmi+kn
− Cn,lmi )− νn,ghi νn,lmi+kn

(Cn,jki+kn
− Cn,jki )

+νn,ghi νn,lmi (Cn,jki+kn
− Cn,jki )− νn,ghi (Cn,jki+kn

− Cn,jki )(Cn,lmi+kn
− Cn,lmi )

+νn,jki+kn
νn,lmi+kn

(Cn,ghi+kn
− Cn,ghi ) + νn,jki νn,lmi (Cn,ghi+kn

− Cn,ghi )− νn,lmi νn,jki+kn
(Cn,ghi+kn

− Cn,ghi )

−νn,lmi νn,jki+kn
(Cn,ghi+kn

− Cn,ghi ) + νn,jki+kn
(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi )

−νn,jki (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ) + νn,lmi+kn
(Cn,jki+kn

− Cn,jki )(Cn,ghi+kn
− Cn,ghi )

−νn,lmi (Cn,jki+kn
− Cn,jki )(Cn,ghi+kn

− Cn,ghi ) + (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi ).

From (A.4), notice that νni is Fni+kn -measurable and satisfies ‖E(νni |Fni )‖ ≤ K∆
1/2
n .

The law of iterated expectations and existing bounds imply

|E(νn,lmi νn,jki+kn
|Fni )| ≤ K∆3/4

n ,

|E(νn,lmi νn,ghi νn,jki+kn
|Fni )| ≤ K∆n,

|E(νn,lmi (Cn,ghi+kn
− Cn,ghi )νn,jki+kn

|Fni )| ≤ K∆n,

|E(νn,lmi+kn
(Cn,jki+kn

− Cn,jki )|Fni )| ≤ K∆3/4
n ,

|E((Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi )|Fni )| ≤ K∆n. (E.56)

It can also be readily verified that

|E(νn,ghi+kn
νn,abi+kn

|Fni+kn)− 1

kn
(Cn,gai+kn

Cn,hbi+kn
+ Cn,gbi+kn

Cn,hai+kn
)− kn∆n

3
C
n,gh,ab

i+kn |

≤ K
√

∆n(∆1/8
n + ηni+kn,kn).

Hence, for ϕn,ghi ∈ {νn,ghi , Cn,ghi+kn
− Cn,ghi }, which satisfies E(|ϕn,ghi |q

∣∣∣Fni ) ≤ K∆
q/4
n and E(ϕn,ghi |Fni ) ≤

K∆
1/2
n . One can show that

|E(ϕn,ghi νn,jki+kn
νn,lmi+kn

|Fni )− E
(
ϕn,ghi

[ 1

kn
(Cn,jli+kn

Cn,kmi+kn
+ Cn,jmi+kn

Cn,kli+kn
)− kn∆n

3
C
n,jk,lm

i+kn

]
|Fni

)
|

≤ K∆3/4
n (∆1/4

n + ηni,2kn).

Next, by combining the successive conditioning together with existing bounds, we have

|E(ϕn,ghi C
n,jk,lm

i+kn )| ≤ K∆1/4
n (∆1/4

n + ηni,kn)

|E(ϕn,ghi Cn,jli+kn
Cn,kmi+kn

)| ≤ K∆1/2
n ,

which together imply

|E(ϕn,ghi νn,jki+kn
νn,lmi+kn

|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (E.57)

It is easy to see that equations (B.12), (E.56) and (E.57) and the inequality ηni,kn ≤ ηni,2kn together yield
equations (B.15) and (B.16).

66



E.6 Proof of Lemma B6

Equation (B.17) can be proved easily using the bounds of ρ(u, v)n,ghi in equation (E.41). To show equations
(B.18), (B.19) and (B.20), we set

A11(H, gh, u;G, ab, v) = λ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)ζ(u)n,ghi ζ(v)n,abi .

Then,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−A11(H, gh, u;G, ab, v)

)
P⇒ 0.

The above result is proved following similar steps as for equation (E.35) in case w = 1 by replacing

Θ(u, v)
(C),i,n
0 by λ(u, v)n0 ((∂ghH∂abG)(Ci−1) − (∂ghH∂abG)(Ci−2kn)), which has the same bounds as the

former. Next, decompose A11 as follows,

A11(H, gh, u;G, ab, v) = λ(u, v)n0

[
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
.

We follow the proof of equation (E.36) for w = 1, and we replace Θ(u, v)
(C),i,n
0 by λ(u, v)n0 (∂ghH∂abG)(Ci−1),

which satisfies only the condition |λ(u, v)n0 (∂ghH∂abG)(Ci−1)| ≤ λ̃nu,v. This calculation shows that the last

two terms in the above decomposition vanish at a rate faster than ∆
1/4
n . Therefore,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− λ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

))
⇒ 0.

As a consequence, for (u, v) = (1, 2) and (2, 1),

1

∆
1/4
n

A11(H, gh, u;G, ab, v)⇒ 0.

The results follow from the following observation,

1

∆
1/4
n

(
λ(u, v)n0

( d∑
g,h,a,b=1

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)

− 3

θ2

∫ T

0

(∂ghH∂abG)(Ct)(C
ga
t Chbt + Cgbt C

ha
t )dt

)
⇒ 0, for (u, v) = (2, 2),

1

∆
1/4
n

(
d∑

g,h,a,b=1

λ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
− [H(C), G(C)]T

)
⇒ 0,

for (u, v) = (1, 1).
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F Additional Figures
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Figure F.1: Monthly R2 of two Return Factor Models (R̂2
Y j): the CAPM (the blue dotted line) and the

Fama-French three factor model (the red solid line). Stocks are represented by tickers (see Table 1 for full
stock names).
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Figure F.2: Monthly R2 of two Return Factor Models (R̂2
Y j): the CAPM (the blue dotted line) and the

Fama-French three factor model (the red solid line). Stocks are represented by tickers (see Table 1 for full
stock names).
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Figure F.3: Correlations between total and residual IdioVols: (a) Corr(CZi, CZj), (b) Corr(CresidZi , CresidZj )

with one volatility factor, the market variance, (c) Corr(CresidZi , CresidZj ) with ten volatility factors, the market
variance and the variances of nine industry ETFs.
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