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Abstract

We consider the problem of conducting inference on nonparametric high-frequency
estimators without knowing their asymptotic variances. We prove that a multivariate
subsampling method achieves this goal under general conditions that were not previ-
ously available in the literature. By construction, the subsampling method delivers
estimates of the variance-covariance matrices that are always positive semi-definite.
Our simulation study indicates that the subsampling method is more robust than the
plug-in method based on the asymptotic expression for the variance.

We use our subsampling method to study the dynamics of financial betas of six
stocks on the NYSE. We document significant variation in betas, and find that tick
data captures more variation in betas than the data sampled at moderate frequencies
such as every five or twenty minutes. To capture this variation we estimate a simple
dynamic model for betas. The variance estimation is also important for the correction
of the errors-in-variables bias in such models. We find that the bias corrections are
substantial, and that betas are more persistent than the naive estimators would lead
one to believe.
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1 Introduction

Financial econometrics has proposed many multivariate estimators for high frequency data.

Moreover, applied researchers often combine multiple estimators. Inference in these settings

requires estimation of the asymptotic variance-covariance (VCV) matrices of the estimators.

The expressions for the VCVs can be complicated, and can be difficult or tedious to derive

and/or estimate.

We propose a subsampling method to estimate the VCV matrices of high frequency

estimators. The method avoids the need to derive the formulas of these VCVs and to con-

struct their analog estimators, instead automatically estimating the VCVs by the proposed

resampling scheme. We prove the validity of this multivariate method for a general class

of estimators including many estimators of the integrated covariance matrices. This result

holds under general conditions allowing for a rich dynamics of the stochastic volatility such

as a Brownian semimartingale or long memory structure, for leverage effects, and for auto-

correlated market microstructure noise. Importantly, the proposed multivariate method has

the appealing property that the estimated VCVs are guaranteed to be positive semidefinite.

The use of resampling methods to compute standard errors of estimators is a standard

practice in applied research that uses i.i.d. and classic weakly dependent data. The approach

of this paper permits extending this practice to a broad class of (possibly multivariate) es-

timators in high-frequency settings. For instance, multivariate estimators in the presence

of serially correlated market microstructure noise may have asymptotic variances with quite

complicated expressions that include numerous cross-parameter and cross-lag terms. Deriv-

ing them and implementing the corresponding plug-in estimators may be a time consuming

and challenging task. Our procedure automatically adapts to the serial correlation of the

noise.

Moreover, our automatic procedure delivers a certain degree of robustness compared

to the plug-in methods for the estimation of VCVs. Our simulation study presents an

example of this property with the Two Scales (TS) estimator of Zhang, Mykland, and Aı̈t-
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Sahalia (2005) and Zhang (2011) that uses tuning parameters suggested by Bandi and Russell

(2011). The choice of tuning parameters following Bandi and Russell (2011) minimizes the

finite sample Mean Squared Error (MSE) of the TS estimator. This value of the tuning

parameter is often much lower than what the “rule-of-thumb” would suggest. Our finite

sample experiments show that in such cases, the subsampling method delivers estimates of

the VCVs that are close to the actual finite sample VCVs, while the plug-in method may

substantially underestimate them.1

We use our multivariate subsampling method to study dynamics in financial betas in two

applications.

First, we test the hypothesis of betas being time-invariant. Such tests can help choos-

ing an appropriate window length for a rolling window approach to estimating betas, see,

e.g., Fama and MacBeth (1973) and Fama and French (1992). We apply the multivariate

subsampling method to high-frequency data on six stocks on the NYSE with the ETF for

S&P500 (SPDR) as the market factor. We consider two types of financial beta estimators:

those based on realized variances calculated with moderate frequency data (5, 10, or 20

minutes), and the TS with tick data. We document significant variation in betas of every

stock across weekly windows, and find that tick data captures more variation in betas than

the data sampled at moderate frequencies.

Second, we provide and implement Measurement-Error-Corrected (MEC) regression es-

timators of the dynamics of betas. A popular approach of modeling the dynamics of betas

is to use parametric auto-regressive models, see, e.g., Braun, Nelson, and Sunier (1995),

Bekaert and Wu (2000), Jostova and Philipov (2005), and Adrian and Franzoni (2009).

More recently, Andersen, Bollerslev, Diebold, and Wu (2005b, 2006) and Patton and Ver-

ardo (2012) estimate the lower-frequency, such as quarterly, beta auto-regressions, in which

the beta for the individual quarter is estimated using high-frequency data. The problem of

1The result is not driven by the failure of estimating the components of the plug-in estimator; the plug-in
estimator is quite close to the derived asymptotic variance, but the latter can differ significantly from the
finite sample variance.
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such auto-regressions is that the estimates of betas are noisy measures of the true betas, and

the regressions that ignore this suffer from the errors-in-variables bias problem. We provide

MEC estimators that correct for this bias. Their implementation requires estimation of the

VCVs of the estimators of the individual betas. We implement the MEC estimators using

our subsampling method to estimate these VCVs. Our empirical results suggest that betas

are more persistent than the naive regression estimators would suggest.

Several papers are related to the multivariate subsampling method developed in this pa-

per. Kalnina (2011) shows the validity of the univariate subsampling method for a general

class of estimators. Compared to that paper, our paper proves the validity of the proposed

multivariate subsampling method under weaker assumptions, numerically illustrates the ro-

bustness of the method in the case of the Two Scales estimator, provides MEC estimators

of the dynamic regressions, and considers the choice of the subsample size. Our subsam-

pling method is partly related to the classical subsampling in the statistics literature for

stationary data, see, e.g., Politis and Romano (1994) and Lahiri, Kaiser, Cressie, and Hsu

(1999). The high-frequency literature has also proposed several estimator-specific subsam-

pling methods. Kalnina and Linton (2007) develop two schemes for the realized variance

estimator. Christensen, Podolskij, Thamrongrat, and Veliyev (2017) show that one of these

schemes is also valid for the power variation estimator, and propose modifications suitable

for several alternative volatility estimators. Ikeda (2016) and Varneskov (2016) apply the

subsampling scheme of Kalnina (2011) and of this paper to the Two Scale and flat-top re-

alized kernels. All of the above methods rely on the squared differences of the estimator

calculated on nested subsamples of various forms. Recently, Mykland and Zhang (2017)

propose an interesting univariate estimator that is based on comparing adjacent subsamples,

followed by an additive bias-correction, instead of nested subsamples. One advantage of the

subsampling method in our paper is that the estimated VCVs are guaranteed to be positive

semi-definite.

The remainder of this paper is organized as follows. Section 2 introduces the multivariate
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subsampling method, and presents the main theoretical results. Section 3 illustrates how

the subsampling method applies to the multivariate Two Scales estimator and the Two

Scales Realized Beta. Section 4 describes methods of analysis of dynamics in betas using the

subsampled variances, including the MEC estimators. Section 5 studies the finite sample

properties of the proposed methods and investigates the choice of the tuning parameters.

Section 6 contains an empirical illustration. Section 7 concludes. All proofs are collected in

the Appendix.

2 A Multivariate Subsampling Method

Suppose we are interested in estimating some volatility measure θ, which is a functional

of some spot variance-covariance process c. The data generating process may be an Itô

Semimartingale with or without some noise contamination or other distortions, and c is the

spot variance-covariance process of the Itô Semimartingale component.2 Suppose we have

an estimator θ̂n, for which we know that

τn

(
θ̂n − θ

)
⇒ N(0, V ), (1)

where τn is the rate of convergence when n observations are used, ⇒ denotes stable conver-

gence in law, and V is the VCV of θ̂n. Suppose we would like to estimate V .

An estimator of the VCV of θ̂ can be constructed as follows. Form a series of longer blocks

of observations, with m consecutive returns in each block, as well as a series of shorter blocks

of observations, with J returns in each block, J < m < n. For any time interval [a, b], denote

by θ̂ ([a, b]) the estimator θ̂ calculated using all price observations in the interval [a, b]. Using

this notation, we define the subsampling estimator of the asymptotic variance-covariance

2For a definition of an Itô Semimartingale and its spot variance-covariance process, see Definition 1.16
and equations (1.74)-(1.75) of Aı̈t-Sahalia and Jacod (2014).
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matrix V as

V̂ sub =

(
1− J

m

)−1
J

n

1

K

K−1∑
k=0

τ 2n

(n
J
θ̂shortk − n

m
θ̂longk

)(n
J
θ̂shortk − n

m
θ̂longk

)′
(2)

where

θ̂longk = θ̂ ([tkm, tkm+m]) and

θ̂shortk = θ̂
([
tkm+b(m−J)/2c, tkm+b(m−J)/2c+J

])
,

and where 0 = t0 < t1 < . . . < tn = 1 denote the observation times. In the above, K = bn/mc

is the number of subsamples, and the term (1− J/m)−1 is a finite sample adjustment factor.

This adjustment is negligible asymptotically, but improves finite sample behaviour; it has the

usual motivation in variance estimation. Without the adjustment factor, V̂ sub in equation

(2) is the multivariate version of the subsampling estimator of Kalnina (2011).

Note that V̂ sub, by construction, is positive semi-definite, which is a key property of any

VCV matrix estimator.

A few comments on the intuition of the estimator V̂ sub are in order. Notice that n
m
θ̂longk

and n
J
θ̂shortk estimate the same object, the “spot” version of θ, but one uses more observations

than the other. Therefore, n
m
θ̂longk can be used to demean n

J
θ̂shortk . The outer product of

the differences is multiplied by the rate of convergence n
J
τ 2n of n

J
θ̂shortk , and then averaged

over subsamples. Hence, the estimator approximates the sum of the variances of the local

estimators. The latter sum equals V if V is additive over time. Hence, V̂ sub estimates V

under the regularity assumptions (described below).

The estimator V̂ sub in equation (2) uses non-overlapping blocks, but can be modified

to use overlapping blocks. The latter estimator is more efficient, but can be more com-

putationally demanding. To describe the definition of the modified estimator, denote by s

(for “shift”) the number of observations to roll the window to obtain the next subsample,

s ∈ {1, ...,m}. Then, the number of subsamples is K =
⌊
n−m
s

+ 1
⌋
, and the first observation

time in the lth long subsample is tls. The expression in equation (2) is obtained by setting
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s = m.

We use the following assumptions to prove the consistency of V̂ sub in equation (2). For

any k1 × k2 matrix Q let ‖Q‖ =
√∑k1

j=1

∑k2
l=1Q

2
jl.

Assumption A1. θ and V are integrated functions of the spot covariance path {cs, s ∈ [0, 1]},

θ =
1∫
0

f (cs) ds, V =
1∫
0

g (cs) ds, where functions f and g are continuously differentiable.

Assumption A2. There exists a constant Bc, and α > 0 such that E
[
‖ct2 − ct1‖

2] ≤
Bc |t2 − t1|α for all t1 and t2. Also, {cs, s ∈ [0, 1]} is tight.

Assumption A3. J →∞, m→∞, J/n→ 0, m/n→ 0, J/m→ 0, and τ 2n Jm
α/n1+α →

0.

Assumption A4. Let Ik,s =
[
tkm+b(m−s)/2c, tkm+b(m−s)/2c+s

]
. For both s = J and s = m,

1

K

K∑
k=1

n

s

τ 2n
θ̂ (Ik,s)−

∫
Ik,s

f (cu) du


θ̂ (Ik,s)−

∫
Ik,s

f (cu) du


′

−
∫
Ik,s

g (cu) du

 p→ 0.

We now discuss the above assumptions. Examples of the parameters of interest θ sat-

isfying Assumption A1 include integrated covariance, integrated quarticity, integrated be-

tas in high-frequency regression (see, e.g., section 4.2 in Mykland and Zhang (2006) and

Zhang (2012)), and principal components (see Aı̈t-Sahalia and Xiu (2019)). The asymp-

totic variances V of the corresponding estimators of such θ typically also satisfy Assumption

A1. Counter-examples for Assumption A1 include parameters of interest that include price

jumps, for example, the quadratic variation. Assumption A1 does not rule out price jumps,

but it does rule out price jumps appearing in the parameter of interest θ or the asymptotic

variance of its estimator V . A standard method to deal with price jumps is by truncation, in

which case the asymptotic variance expressions do not contain price jumps and Assumption

A1 is satisfied, see, e.g., Chapter 6.2.1. of Aı̈t-Sahalia and Jacod (2014).

Assumption A2 allows long memory in the spot variance process, as illustrated by Lemma

2 below. Assumption A2 also allows for the more standard Brownian Semimartingale dy-
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namics in the c process. In the latter case, Assumption A2 is satisfied with α = 1. Note

that Kalnina (2011) assumes a Brownian Semimartingale dynamics for volatility.

Assumption A3 requires that there are many observations in each subsample and many

subsamples. It also requires J/m to be small so that the long subsample can approximate the

true value for centering the estimator on the short subsample. The last rate requirement in

Assumption A3 arises due to the “discretization bias” in the volatility, i.e., from us implicitly

approximating ct by integrals of ct on short intervals. The less smooth is the volatility, the

more restrictive the last condition of Assumption A3 is.

Assumption A4 is relatively high level, but it is simple. The term n/s is the inverse of

the length of the subsample; it ensures that each term in the sum is of order one. Notice

that when we consider the case of the longer subsamples (s = m), we have

1

K

n

m

K∑
k=1

∫
Ik,m

g (cu) du =
K∑
k=1

∫
Ik,m

g (cu) du =

1∫
0

g (cu) du = V.

In this case, Assumption A4 requires that the sample second moment matrix, centered at

the true (unknown) parameter, converges in probability to V . Moreover, a similar property

is assumed to hold for the case of the shorter subsamples (s = J). Note that the smoothness

condition on ct was already imposed in Assumption A2. In contrast to the relevant as-

sumption (A5) in Kalnina (2011), Assumption A4 allows for the leverage effects in returns,

which is empirically important. Assumption A4 essentially requires that the estimator on

the subsample behaves similarly to the estimator on the full sample, in the sense that its

variance is the corresponding portion of the integral V . This is an important property, and

subsampling relies on it, but typically, high-frequency estimators have such property.

With the above assumptions, the subsampling estimator is consistent:

Theorem 1. Suppose Assumptions A1, A2, A3, and A4 hold. Let V̂ sub be defined by (2).

Then, as n→∞,

V̂ sub p→ V.
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Remark. Notice that V̂ sub is an automatic method in the sense that it does not use any

information about the expression for V . As a result, the applied researchers can easily imple-

ment it. The availability of an automatic estimator of V is particularly useful in practice for

multivariate parameters θ and possibly serially correlated data (e.g., because of the market

microstructure noise), since in those cases the expression for V is generally complicated and,

moreover, there is a large number of plug-in parameters such as the cross-covariances to be

estimated if one wants to estimate the plug-in estimator of V .

Lemma 2 below illustrates the fact that Assumption A2 can be satisfied for a long memory

spot volatility process.

Lemma 2. Let x(t) = 1
2

ln ct be a scalar log-volatility process. Assume it follows dynamics

dx(t) = −κx(t)dt+ γdBα(t), t ∈ [0, T ]

where

Bα(t) =

∫ t

0

(t− s)α

Γ(1 + α)
dW̃ (s),

where W̃ (t) is a standard Brownian motion, and where γ, κ, and α are constants such that

κ > 0, 0 < α < 1
2
. Then, Assumption A2 is satisfied with α = α.

2.1 The Choice of Parameters for Subsampling

For practical application, one needs to choose specific values for the subsample sizes (m and

J). The choice of such tuning parameters is well known to be a difficult problem, with many

alternative approaches proposed even for the standard HAC estimation (see, e.g., Lazarus,

Lewis, Stock, and Watson (2018) for a recent review). For example, Andrews (1991) derives

an MSE-optimal HAC estimator, which depends on the unknown spectral density. To obtain

a data-driven choice of the tuning parameter, Andrews (1991) suggests estimating the latent
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spectral density using a simple parametric reference model, AR(1).

Our goal is to provide a method of inference that does not require the researcher to

calculate the asymptotic variance V , let alone any higher-order expansions. Therefore, our

suggested method is not based on an analytical MSE expansion.

We suggest the following procedure to choose the subsample sizes. It is a variation of the

calibration method considered in Politis, Romano, and Wolf (1999). First, the researcher

chooses and estimates a parametric reference model of the stock price dynamics for the real

data, on which the subsampling method is to be used. Note that one can use any additional

available and relevant data, e.g., option prices, in addition to the price data. In this paper,

we illustrate this method using Heston (1993) model as the reference model. The reference

model should be chosen to fit the data sufficiently well; if the researcher suspects the Heston

model is a poor fit, she may use, for example, a two-factor volatility model instead. Then, the

researcher simulates pseudo-data from the estimated model, and calculates the subsampled

variances for a range of values of m and J . This simulation is repeated multiple times.

Finally, the researcher chooses the values of m and J that provide the best performance

of the subsampling estimator, based on the estimation of the asymptotic variance, or the

coverage of the confidence intervals.3

This suggestion is easy to implement, and it has an intuitive justification. By choosing

the reference model, the researchers can tailor the procedure to the applications they have

in mind. In Section 5, we study this procedure in a set of finite sample experiments, see also

Appendix R. We leave theoretical analysis of the procedure for future research.

Importantly, we find that the subsampling procedure is insensitive to the choice of sub-

sample sizes for a wide range of values.

3Of course, just like all other methods relying on the estimated reference model, the resulting choices of
the subsample sizes are affected by the choice of the reference model.
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3 Inference for the Two Scales Realized Beta (β̂TS)

Using Subsampling

This section illustrates the subsampling methodology by applying it to a specific estimator

in the setting with the market microstructure noise. In particular, suppose we are inter-

ested in constructing confidence intervals for an estimator of beta based on the Two Scales

(co)volatility estimators. We choose the Two Scales estimator because of its popularity and

the fact that the choice of the (single) Two Scales tuning parameter, as well as the accu-

racy of asymptotic approximations, has been studied extensively for this estimator (see, e.g.,

Bandi and Russell (2011)). We note that many alternative multivariate volatility estimators

that are robust to the market microstructure noise have been proposed.4

For simplicity, we introduce the framework for one factor beta; we also consider one time

period, such as one week, which we normalise to be [0, 1]. Denote by X the vector containing

the latent (log-)prices of the asset XS and of the factor XF , so that Xt =
(
XS
t , X

F
t

)′
.

We follow Zhang et al. (2005) and Zhang (2011), and assume that X follows a Brownian

Semimartingale. For t ∈ [0, 1],

Xt = X0 +

∫ t

0

bu du+

∫ t

0

σudWu, (3)

where W is a d-dimensional Brownian motion, σu is a d × d stochastic volatility process.

We are considering the bivariate case d = 2. The spot covariance of X is the d × d matrix

cu = σuσ
>
u with cu,ij its (i, j) element. We choose the following popular measure of beta of

4Examples of rate-optimal co-volatility estimators (with a rate of convergence n1/4) include the pre-
averaging estimator (Christensen, Kinnebrock, and Podolskij, 2010), the Quasi-Maximum Likelihood esti-
mator (Aı̈t-Sahalia, Fan, and Xiu, 2010), the Multi-Scale Realized Variance (Bibinger, 2012), and the local
spectral estimator (Bibinger and Reiss, 2014). The multivariate realized kernel of Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2011) uses a larger bandwidth to guarantee positive semi-definite estimates and ro-
bustness to general noise; in this case the realized kernel is n1/5-convergent. The Two Scales estimator has
a rate of convergence n1/6.
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the asset,

β :=

∫ 1

0
cu,12du∫ 1

0
cu,22du

=

〈
XS, XF

〉
〈XF , XF 〉

, (4)

where
〈
XS, XF

〉
is the quadratic covariation between XS and XF over the time period [0, 1].5

This measure of beta has been used in, e.g., Andersen et al. (2005b, 2006), Barndorff-Nielsen

and Shephard (2004), and Bandi and Russell (2005). See Bollerslev and Zhang (2003) and

Todorov and Bollerslev (2010) for a discussion of how this beta is related to a discrete-time

regression model.

Clearly, our parameter of interest β in equation (4) violates Assumption A1. Hence,

there is no estimator of β, for which a univariate subsampling method can be applied di-

rectly. However, β is a function, say γ, of another bivariate parameter θ, which does satisfy

Assumption A1,

β = γ (θ) =
θ2
θ1

, where θ =

 θ1

θ2

 . (5)

In the above, θ1 =
∫ 1

0
cu,22du and θ2 =

∫ 1

0
cu,12du. An estimator of the beta is β̂ = γ

(
θ̂
)

. If

θ̂TS is a TS estimator, we call β̂TS = γ(θ̂TS) the Two Scales Realized Beta.

If the subsampling assumptions are satisfied by θ̂, we can obtain the asymptotic variance-

covariance matrix of θ̂ by subsampling. Corollary 3 below shows this is indeed the case for the

TS estimator. An application of the Delta method delivers an estimator of the asymptotic

variance of β̂ = γ
(
θ̂
)

.

We now introduce the Two Scales estimators. The data is generated by a contaminated

process Y = X + ε. The additive measurement error ε represents the market microstructure

effects such as the bid-ask bounce. Suppose we have n + 1 equidistant observations on Y

over [0, 1] at times 0 = t0 < t1 < . . . < tn = 1. Then, an example of an estimator of θ2 in

5Alternative beta measures include the spot beta (a time-localised version of (4)), see, e.g., Mykland
and Zhang (2006), Li, Todorov, and Tauchen (2017), Kalnina and Tewou (2019), and Yang (2020), and
integrated beta, see, e.g., Aı̈t-Sahalia, Kalnina, and Xiu (2020).
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equation (5) is the Two Scales estimator of Zhang (2011),

̂〈XS, XF 〉
TS

=
[
Y S, Y F

](G1) − nG1

nG2

[
Y S, Y F

](G2)
(6)

where [
Y S, Y F

](Gj)
=

1

Gj

n∑
i=Gj

(
Y S
ti
− Y S

ti−Gj

)(
Y F
ti
− Y F

ti−Gj

)
, j = 1, 2.

To estimate θ1, we use analogously defined quantities ̂〈XF , XF 〉
TS

and
[
Y F , Y F

](Gl). In the

above, nGj =
n−Gj+1

Gj
for j = 1, 2, G1 =

⌊
ϕTSn2/3

⌋
for some tuning parameter ϕTS, and

G2/G1 → 0.

We illustrate the application of Theorem 1 in the TS example with d = 2 and the following

dynamics of the market microstructure noise ε =
(
εS, εF

)′
:

Assumption N. The noise εti is independent of the efficient price X, it is (when viewed

as a process in index i) stationary and exponentially α-mixing. Also, Eε4+δ < ∞ for some

δ > 0.

The asymptotic distribution of the TS estimator of the θ vector in equation (5) is

n1/6


 ̂〈XF , XF 〉

TS

̂〈XF , XS〉
TS

−
 〈

XF , XF
〉

〈
XF , XS

〉

⇒MN

(
0, V TS

)
, (7)

where

V TS
11 = ϕTS

4

3

1∫
0

(cu,22)
2du+ 8(ϕTS)−2V ar

(
εF
)2

+ 16(ϕTS)−2 lim
n→∞

n∑
i=1

Cov
(
εF0 , ε

F
i/n

)2
(8)

was first derived in Aı̈t-Sahalia, Mykland, and Zhang (2011).6,7 In equation (8), the first

summand is clearly a smooth function of cu. The remaining summands do not change across

time. Therefore, the whole expression V TS
11 is an integral of a smooth function of cu and

6The expression for V TS
22 is rather complicated and can be found in Zhang (2011) (Theorem 6 and

equation (52) in the appendix), while the expression for V TS
12 does not seem to be available in the literature,

although it can be derived following the arguments of Zhang (2011).
7Aı̈t-Sahalia et al. (2011) and Zhang (2011) do not provide estimators for the asymptotic variances of

the proposed estimators.
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hence satisfies Assumption A1. The same argument applies to other elements of V TS .

The following corollary is proved in the appendix by verifying the assumptions of Theorem

1.

Corollary 3. Suppose log-price X satisfies equation (3) with d = 2, where bs and σs are

adapted and càdlàg. Let θ̂n be the TS estimator defined by (6), with sequences of parameters

G1 and G2 satisfying G1 =
⌊
ϕTSn2/3

⌋
for some tuning parameter ϕTS, G2 is such that

Cov (ε1, εG2) = o
(
n−1/2

)
, G2 → ∞, and G2/G1 → 0. Let V be defined by V TS in equation

(7), and V̂ sub be defined by (2). Suppose assumptions A2, A3 and N hold. Then,

V̂ sub p→ V.

Since τn = n1/6 for the TS estimator, if volatility is a Brownian semimartingale, the

last condition of Assumption A3 is satisfied if Jm/n5/3 → 0. For general α > 0, the last

condition of Assumption A3 is Jmα/n2/3+α → 0.

We conclude this section with a remark about using data with non-equidistant and asyn-

chronous observations. Theorem 1 and Assumptions A1-A4 do not rely on any specific

sampling scheme or syncrhonisation method for asynchronous data. Corollary 3 assumes

that observations are equidistant. If the data is irregular, we conjecture that as long as the

TS estimator is implemented in tick time, and under additional regularity assumptions on

the durations, the conclusion of Corollary 3 would remain valid, see Aı̈t-Sahalia and Jacod

(2014), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and Hayashi, Jacod, and

Yoshida (2011). If the data is in addition asynchronous, and the Refresh Time sampling is

used, Corollary 3 should remain valid under the regularity assumptions on the refresh times,

see Barndorff-Nielsen et al. (2011).
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4 Econometric Methods of Analysis of the Dynamic

Properties of the Betas

We now introduce two sets of tools for studying the dynamics of financial betas, which build

on our subsampling method. We illustrate these tools in our empirical illustration in Section

6. First, we briefly outline a test for time-invariance of betas. Second, we introduce the

Measurement-Error-Corrected (MEC) estimator, which uses the estimators of the asymptotic

variances of betas to correct for the biases of the OLS estimator in a dynamic model for betas.

4.1 Tests of Time-Invariance of Betas

We begin by introducing the necessary notation and describe simple tests of parameter

constancy of some scalar parameter β across k time periods (such as days, weeks, months, or

quarters). We use the notation β because we later apply this test to financial beta, but the

test applies to any parameter of interest. Denote by β̂ some generic estimator of β, where

β̂ =

(
β̂1 β̂2 . . . β̂k

)′
and β =

(
β1 β2 . . . βk

)′
,

and let ni be the number of observations in period i. The estimation errors β̂i − βi of most

high-frequency estimators are independent across time periods i = 1, 2, . . . , k (see, e.g.,

Section 5 of Zhang et al. (2005)), with the asymptotic distribution

τn1ΦΣ−1/2
(
β̂ − β

)
⇒ N (0, Ik) , (9)

Σ = diag (V1, V2, ..., Vk) , and Φ = diag (φ1, φ2, . . . , φk) ,

where Σ is a diagonal matrix containing the asymptotic variances of β̂i, and Ik denotes the

k × k identity matrix. The rate of convergence of the estimator in period 1 is denoted as

τn1 . In most applications it is natural to assume that the number of observations ni across

periods are of the same order of magnitude, so that τni = τn1 (φi + o(1)) for some positive
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finite constants φi, i = 2, . . . , k.

The hypothesis of time-invariant β is

H0 : β1 = . . . = βk, versus H1 : βi 6= βj for some i and j. (10)

Rewriting the null hypothesis as H0 : βi = β1 for i = 2, . . . , k as usual we have

τ 2n1
β̂′∆′ (∆Φ−1ΣΦ−1∆′)

−1
∆β̂ ⇒ χ2

k−1, where the matrix ∆ is (k − 1) × k and is defined

as ∆ = (−ik−1, Ik−1), where ik−1 is a (k − 1)× 1 vector of ones, so ∆β = 0k−1 under H0. The

convergence to χ2
k−1 follows from (9). The subsampling method described in the previous

section can be used to estimate each of the elements of the diagonal matrix Σ; denote this

estimator by Σ̂. Since we have established the consistency of Σ̂ in the previous section, we

have the test statistic

τ 2n1
β̂′∆′

(
∆Φ−1Σ̂Φ−1∆′

)−1
∆β̂ ⇒ χ2

k−1. (11)

We can similarly test the null hypothesis of constant betas jointly across stocks, i.e.,

H0 : β
(j)
1 = β

(j)
2 = . . . = β

(j)
k for each j,

where β
(j)
i denotes the beta of the jth stock in the ith time period. In this case, the matrix

Σ̂ will be block diagonal, with each block corresponding to a separate time period, and can

also be estimated by the subsampling method of the previous section.

4.2 Estimation of Models of the Dynamics: the Measurement Er-

ror Correction

When the hypothesis of time-invariant betas is rejected, researchers are often interested in

estimating models of the dynamics of the beta. Such models often also include low-frequency

macroeconomic and financial variables. For example, the unconditional Capital Asset Pricing

Model has time-invariant betas and is known not to be empirically realistic; to alleviate this
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problem, various conditional CAPM models have been proposed, in which betas vary with

variables in investors’ information set. If the model includes lagged betas, the errors-in-

variables problem can arise, which leads to inconsistent parameter estimates. This problem

can however be addressed if we have access to the variance of the estimation error.

To illustrate the measurement error correction, consider the dynamic specification for

betas in the conditional CAPM of Adrian and Franzoni (2009). In this specification, the

variation in betas has a component that depends on exogenous regressors, an autoregressive

component, and an idiosyncratic component. A similar beta specification is estimated by

Andersen et al. (2005). It can be written as

βi = ρ1βi−1 + . . .+ ρpβi−p + γ′Xi + Ui, i = p+ 1, . . . , k, (12)

where βi is the value of financial beta in ith time period, and Xi collect the conditioning

variables, as well as the intercept (we follow the notation of Section 4.1). Both Andersen et

al. (2005) and Adrian and Franzoni (2009) estimate their models using the Kalman Filter.

While the conditioning variables Xi are usually only available at lower frequencies, we

can exploit the high-frequency asset price data to estimate (12) by replacing βi with the

high-frequency estimate β̂i for each i.8 However, this substitution leads to the problem of

measurement errors in covariates, because it puts estimated β̂i−1 on the right-hand side of

equation (12). Let εi = β̂i− βi denote the difference between the estimated and the true βi,

then εi can be seen as the measurement error.

The presence of measurement errors in covariates β̂i means that we cannot use the stan-

dard OLS estimators of ρ1, . . . , ρp, and γ as they are biased and inconsistent. However, it is

possible to account for the measurement errors and to provide consistent estimators of the

parameters of interest, see, e.g., Andersen, Bollerslev, and Meddahi (2005a) who adjust the

forecasting loss functions.

We first introduce some additional notation. Let βi,L = (βi−1, . . . , βi−p)
′, β̂i,L =

(
β̂i−1, . . . , β̂i−p

)′
,

8For example, Andersen et al. (2005) use daily returns to calculate quarterly Realized Betas.
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Zi ≡
(
β′i,L, X

′
i

)′
, Ẑi ≡

(
β̂′i,L, X

′
i

)′
, ρ = (ρ1, . . . , ρp)

′, θ = (ρ′, γ′)′. Consider the infeasible OLS

estimator

θ̂Infeasible =

(
1

k − p− 1

k∑
i=p+1

ZiZ
′
i

)−1
1

k − p− 1

k∑
i=p+1

Ziβi.

This estimator is infeasible because βi and βi,L are not observable. Replacing βi and βi,L

with β̂i and β̂i,L we obtain the feasible OLS estimator

θ̂OLS =

(
1

k − p− 1

k∑
i=p+1

ẐiẐ
′
i

)−1
1

k − p− 1

k∑
i=p+1

Ẑiβ̂i.

Let us consider the effect of replacing βi with β̂i. Remember that εi = β̂i − βi ∼a

N
(
0, Vi/τ

2
ni

)
, and that E [εiεj] = 0 for i 6= j. Usually εj are also uncorrelated with Xi and

hence we have

1

k − p− 1

k∑
i=p+1

Ẑiβ̂i −
1

k − p− 1

k∑
i=p+1

Ziβi
p→ 0 as k → ∞,

1

k − p− 1

k∑
i=p+1

ẐiẐ
′
i −

1

k − p− 1

k∑
i=p+1

ZiZ
′
i − Ξk

p→ 0 as k → ∞,

where Ξk =
1

k − p− 1

k∑
i=p+1

diag
(
Vi−1/τ

2
ni−1

, . . . , Vi−p/τ
2
ni−p

, 0, . . . , 0
)

. (13)

The feasible and infeasible OLS estimators differ because of the term Ξk. When this term

is not negligible, we should correct the OLS estimator. The term Ξk can be estimated by

Ξ̂k, which is obtained by replacing Vi with their estimators V̂i in equation (13). Hence, in

the empirical analysis we can use the Measurement-Error-Corrected (MEC) estimator

θ̂MEC =

(
1

k − p− 1

k∑
i=p+1

ẐiẐ
′
i − Ξ̂k

)−1
1

k − p− 1

k∑
i=p+1

Ẑiβ̂i.

It is worth noting that in contrast to Kalman filter, this estimator does not need to assume

that Ui (or εi) are homoscedastic, which is important for finance applications: for example,

uncertainty about betas varies with firm-specific information flows, see Patton and Verardo
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(2012).

Considering the linear model (12) allows us to obtain explicit expression for the estimator

θ̂MEC . Note that we could also use the estimated V̂i to bias-correct the estimators in nonlinear

models, although the estimators may not have simple analytic expressions.

5 Simulation Studies

We now illustrate the subsampling method in the example of the Two Scales Realized Beta

estimator calculated over one day. This section has two objectives. First, we investigate the

suggested procedure for choosing the subsampling parameters m and J . Second, we verify

the performance of the subsampling variance estimator in finite samples. We also discuss the

choice of the parameters of the β̂TS estimator G1 and G2. As a robsutness check, Appendix

R repeats the analysis with a two-factor stochastic volatility model.

5.1 Monte Carlo Designs

We use a Heston (1993) model with parameters calibrated from the data, and simulate the

data to be irregular and asynchronous. We simulate the efficient log-price for six stocks X(1),

. . . , X(6) and the market portfolio X(7) over one week:

dX
(j)
t =

(
α
(j)
1 − c

(j)
t /2

)
dt+ σ

(j)
t dW

(j)
t

dc
(j)
t = α

(j)
2

(
α
(j)
3 − c

(j)
t

)
dt+ α

(j)
4

(
c
(j)
t

)1/2
dB

(j)
t , j = 1, . . . , 7,

where c
(j)
t =

(
σ
(j)
t

)2
, and W

(j)
t and B

(j)
t are Brownian Motions with Corr

(
W

(j)
t , B

(j)
t

)
= ρ(j).

The latter correlation induces the classical leverage effect for each of the stocks and the

market portfolio.

To obtain realistic values of the dynamics of the efficient log-price, we calibrate them to

the data as follows. The parameters of processes X(1), . . . , X(7) are matched to data from

the seven assets we use in the empirical application: AIG, GE, IBM, INTC, MMM, and
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MSFT stock prices, and the SP500 index, see Section 6.1 for further details on the data. For

each of the six stocks, we collect full record transaction prices as well as daily option data

over the year 2006. For the market portfolio, we use the full-record transaction prices of the

S&P500 index ETF (ticker SPY) as well as the daily S&P500 index option data over the

year 2006 (ticker SPX). The parameter α
(j)
4 is estimated using the following identity:

(
α
(j)
4

)2
=

〈
c(j), c(j)

〉
〈X(j), X(j)〉

. (14)

The numerator is the quadratic variation of the spot variance of the jth asset. To estimate

it, we use moderate frequency price returns and the estimator of Vetter (2012) with jump

truncation, see Jacod and Rosenbaum (2015).9 We estimate the denominator in the above

with truncated realized variance, see Mancini (2001). The initial value of the variance

process is constrained to equal the value of the parameter α
(j)
3 . Parameters α

(j)
2 , α

(j)
3 , and

ρ(j) are chosen to minimise the sum of squared weighted differences between the model-

implied option prices and the observed option data of the asset j, with weights being smaller

when the bid-ask spread is larger. We set α
(j)
1 to 0.05 as in Zhang et al. (2005). Finally,

we set the correlation of the individual stock and the market Corr
(
W

(j)
t ,W

(7)
t

)
= %(j),

j = 1, . . . , 6, to the value of the realized beta with 50-tick observations of the jth stock.10 In

this model, the beta over [0,1] is

β(j) = %(j)
1∫

0

σ(j)
u σ(7)

u du

/ 1∫
0

(
σ(7)
u

)2
du , j = 1, . . . , 6. (15)

Hence, we obtain six sets of parameters for the bivariate model with one stock and the

market factor; we denote them as scenarios (1), . . . , (6).

9We use 5-min frequency, which is a simple and popular choice. Bandi and Russell (2008) provide the
optimal frequency for the realized variance.

10The realized beta estimator is defined as β̂RV = θ̂RV
2 /θ̂RV

1 where θ̂RV
1 = [XF , XF ] =

∑n
j=1(XF

tj −
XF

tj−1
)(XF

tj − XF
tj−1

) is the realized variance of the market returns, θ̂RV
2 = [XS , XF ] =

∑n
j=1(XS

tj −
XS

tj−1
)(XF

tj −X
F
tj−1

) is the realized covariance of the stock and the market returns, and where θ is defined
in equation (5).
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Microstructure noise is simulated as a normally distributed white noise with variance

ξ(j)IV (j), where ξ(j) is a noise-to-signal ratio, and IV (j) is the weekly integrated volatility of

the jth stock, see, e.g., Hansen and Lunde (2006). We set ξ(j) to be either 0 or 0.0001; all

estimated values of the noise-to-signal ratio are between these two values, see Table D.1. We

simulate the noise to be i.i.d. to minimise the number of total scenarios and parameters, and

concentrate instead on the choice of key smoothing parameters. Note that the properties of

the univariate subsampling method with autocorrelated and heteroscedastic noise have been

documented before. Observed prices are efficient log-prices plus noise.

We match the number of asynchronous observations of each asset, nj, j = 1, . . . , 7, to the

data (see the first column in Table D.1). To do so, we first simulate one week of 1 second

synchronous observations. From these, we take ni irregular and asynchronous observations

by drawing a random permutation of all 1-second observation times in a week, taking the

first ni of them, and sorting them. Observations are then synchronized using the Refresh

Time method,11 resulting in a random number of observations to be used for estimation.

5.2 Choice of the Parameters of the Two Scale Estimator (Table

M.1)

For the TS parameter G1, we use a range of values that include the main recommendations

in the literature, and the current section provides the implementation details for choosing

this range. We calculate the Two Scale estimator following the equation (6) with G2 = 1

(for the i.i.d. noise) and the finite sample adjustment suggested in Zhang et al. (2005).

As a rough starting point for choosing a range of G1 for TS-beta, we use the two data-

driven principles of selecting G1 parameter for the TS variance estimator that are available

in the literature: by minimisation of the asymptotic variance (Zhang et al., 2005) and by

minimisation of the finite sample MSE, see Bandi and Russell (2011), henceforth BR. We

denote the theoretical values given by these rules by G?
1 and GBR

1 , and the estimated values

11See Barndorff-Nielsen et al. (2011).
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by Ĝ?
1 and ĜBR

1 . Simplifying the notation of Section 3 to the case of one variable, the precise

expressions are as follows:

� G?
1 = ϕ?n2/3 with ϕ? =

(
16ω4

4
3
E(IQ)

)1/3
where ω2 = Eε2 and IQ =

∫ 1

0
c2udu.

� Ĝ?
1 replaces the unobservable ω2 and IQ in G?

1 with their estimators.

� GBR
1 = argminG1

MSE(G1) where MSE(G1) = MSE (G1, n, IQ, IV, ω
2) is the finite

sample MSE of the TS variance estimator, presented in the Corollary 3 of Bandi and

Russell (2011). IV =
∫ 1

0
cudu.

� ĜBR
1 replaces the unobservable ω2, IV and IQ in GBR

1 with their estimators.

We use the following estimators to obtain Ĝ?
1 and ĜBR

1 . To estimate the variance of the

noise ω2, we use the estimator (17) calculated with the highest frequency data. To estimate

IV and IQ, for simplicity, we use Realized Variance and Realized Quarticity (Barndorff-

Nielsen and Shephard, 2004) calculated with 5-min data. Table M.1 shows the values of the

four different rules for choosing G1 in the six simulated scenarios.

Another, more heuristic, recommendation for the choice of G1 is to choose the slow

scale to correspond to 5-min frequency, see, e.g., Section 4.2 of Aı̈t-Sahalia and Mancini

(2008). This rule-of-thumb implies that G1 depends only on the number of observations,

and it is different across stocks and weeks. Table D.2 gives an idea of the average values

of the resulting G1. For example, INTC, our most liquid stock, has 24,601 observations

after pairwise synchronisation with the market, which implies an average value of G1 of 63.1.

Other stocks have smaller number of observations, especially after joint synchronisation with

all stocks and the market.

Table M.1 shows the finite sample MSE across simulations of the β̂TS estimator for a

range of G1. In all cases considered, the BR rule results in a smaller finite sample MSE than

the rule based on the asymptotic variance, which in turn gives more precise estimates than

the 5-min rule-of-thumb. (These favorable properties are not a priori guaranteed as GBR
1

and G?
1 are theoretically optimal for the TS variance, not TS-beta.)
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We conclude that a relatively large range of values ofG1 is needed to include all practically

relevant implementation versions of β̂TS: on the one hand, very small values of G1 deliver

precise estimates of β̂TS; on the other hand, the 5-min rule-of-thumb results in relatively

large values of G1. Hence, the simulation exercises below use values ranging from G1 = 3 to

G1 = 50.

5.3 Choice of the Subsampling Parameters (Tables M.2-M.5)

To obtain a data-driven choice for m and J , we fit a parametric reference model to our data,

see Section 2.1 for details.

Tables M.2-M.3 show the average over simulations of the subsampled variances V̂ sub of

the β̂TS estimator. (The quantities V FS , V Theo , and V̂ pl are discussed below.) We find that

the values of subsampled variances are relatively flat over wide ranges of m and J for all

G1 considered indicating the method is not very sensitive to the choice of the smoothing

parameters. This is a very desirable property, but it does imply that pinning down the exact

values of J and m is difficult, as they lead to very similar finite sample performances. In

light of these results we choose J = 500 and m = 3000 for the applications. We use the same

m and J for every week.12

We also consider the coverage of the nominal 95% confidence interval based on the β̂TS

estimator. The results are given in Tables M.4 and M.5. We again find that the results are

relatively flat over wide ranges of m and J . To limit the number tables, Tables M.4-M.5

consider scenario (3) (where the design is calibrated to IBM data), but the same conclusions

hold for other scenarios.

12The practitioner may alternatively estimate the chosen parametric model on a sequence of windows
instead of the full sample; this improves the approximation of the true model, while increasing the estimation
errors (and computational time).
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5.4 Performance of the Subsampling Estimator for β̂TS (Tables

M.6-M.9)

We now consider the problem of assessing the performance of the subsampled variances,

first, in matching the true variability of the TS estimator, second, in terms of the coverage

of the confidence intervals of the TS estimator. Due to stochastic volatility, the asymptotic

and finite sample variances vary across simulations. In this setting, we can obtain the finite

sample variability as the scaled mean squared estimation error, e.g., in the case of β̂TS, it

is the average over simulations of n1/3
(
β̂TS − β

)2
. We denote it by V FS . We also compare

the subsampled variances with two benchmarks that rely on the analytic expression of the

asymptotic variances: the (unobserved) asymptotic variance V Theo , as well as its estimated

counterpart V̂ pl using the same estimation approach as for Ĝ?
1 and ĜBR

1 .

Tables M.6 and M.7 contain the results for the β̂TS estimator. The subsampling method

appears to be much more robust than the plug-in method based on the expression for the

asymptotic variance. While the plug-in estimator estimates the asymptotic variance well, the

asymptotic variance itself is not very close to the finite sample variability V FS for relatively

small values of G1. The subsampling method, on the other hand, delivers good estimates

of the finite sample variability for the whole range of G1 considered. As can be seen from

Table M.1, these smaller values of G1 where subsampling method performs particularly well

compared to V̂ pl (and V Theo), are often close to the values of G1 that minimise the finite

sample MSE of the β̂TS.

We next present the results in terms of the coverage of the confidence intervals for the β̂TS

estimator. The results for scenarios (1)-(6) are collected in Tables M.8 and M.9. We confirm

the conclusions above: the subsampling method performs very well and is more robust than

the plug-in method based on the asymptotic variance with respect to the TS parameter G1.
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5.5 Performance of the Subsampling Estimator for TSRV (Tables

M.10-M.13)

Finally, we repeat the above analysis for the TS estimator of the variance of the stock

(TSRV). As opposed to β̂TS, this estimator does not involve any nonlinear transformations.

The results are collected in Tables M.10-M.13. Again, the subsampling method is more

robust than the plug-in method V̂ pl.

6 Empirical Analysis

This section implements the above methods with real data using both moderate and high

frequencies. We use RV-based estimators for moderate frequencies (5, 10, and 20 minutes),

and TS-based estimators for high frequencies (tick data).

Some key implementation choices are as follows. To obtain the asymptotic variance of RV-

based estimators, we use Barndorff-Nielsen and Shephard (2004) estimator of the variance-

covariance matrix of θ̂RV (recall notation in equation (5)). The estimator of variance-

covariance matrix of θ̂TS is obtained by subsampling. The Two Scale estimator is imple-

mented with the finite sample correction suggested in Aı̈t-Sahalia et al. (2011). In all that

follows, length of intervals [i− 1, i) is taken to be one week.

6.1 Description of the Data and Preliminary Analysis

We use high frequency transactions data on six individual stocks. They are American In-

ternational Group, Inc. (listed under the ticker symbol AIG), General Electric Co. (GE),

International Business Machines Co. (IBM), Intel Co. (INTC), 3M Co. (MMM), and

Microsoft Co. (MSFT). To proxy for the market portfolio, we use Standard and Poor’s

Depository Receipts (SPIDERS for short, ticker symbol SPY), which is a Traded Fund set

up to mimic the movements of the S&P 500 index. Our data covers the whole year 2006 and

is obtained from the NYSE TAQ database. We clean the data according to the recommen-

25



dations of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) and remove jumps with

the thresholding methodology, see Mancini (2001).

We start by analyzing the high frequency data. Table D.1 contains some summary statis-

tics of the data before synchronization: transactions per week, estimates of the noise variance,

noise-to-signal ratio, and autocorrelations of returns at first three lags. First autocorrelations

are all large and negative, which is typical of noisy data and unlikely to arise from Brownian

Semimartingale. Second autocorrelations are all positive, some are large. Alternating signs

of autocorrelations indicate that the main component of the noise is the bid-ask bounce.

In fact, if we removed all zero returns, the remaining data would display very persistent

autocorrelation with alternating signs, see, e.g., Griffin and Oomen (2008). In the full data

set with zero returns, this effect is attenuated because the switching times of bid and ask are

random. Third autocorrelations are of different signs and small. Columns 2 and 3 in Table

D.1 show two estimators of the noise variance. The first estimator of the noise variance is

the realized variance divided by twice the sample size,

ω̂2 = [X,X] /2n, (16)

see Bandi and Russell (2006). The second estimator of the noise variance corrects a small

sample bias,

ω̃2 =

(
[X,X]− 〈̂X,X〉

TSRV
)
/2n, (17)

similarly to, e.g., Hansen and Lunde (2006). The estimated values of ω2 are along the lines

of those reported previously, see, e.g., Bandi and Russell (2006).

Table D.2 contains the same summary statistics for the data after synchronization. The

number of synchronized observations is smaller, especially after joint synchronization across

assets. Noise variances are larger as measured by ω̂2, but we can easily verify this is purely

due to a larger finite-sample bias caused by the smaller number of observations. In particular,

the bias-adjusted estimators ω̃2 are the same with and without synchronization.
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Figure D.3 contains the signature plots of the RV-based beta (or realized beta) for each

stock, i.e., plots of RV-based beta against the frequency used in its calculation.13 There is

a strong bias towards zero at the highest frequencies. This bias is a combination of, first,

the realized volatilities exploding due to the microstructure noise dominating at the highest

frequencies, second, the realized covariances being biased towards zero at these frequencies,

i.e., the Epps effect. This confirms that the realized betas should not be calculated using

the highest frequencies. On the other hand, the Two Scale estimator, while using all the

synchronized data, cancels both the effect of noise and asynchronous observations and is

consistent (see Zhang (2011)).

6.2 Testing the Constant Beta Hypothesis

Figure E.3 shows plots of estimated betas using β̂RV10min and β̂TS together with 95% confidence

intervals, which are based on the estimator of Barndorff-Nielsen and Shephard (2004) and

subsampling, respectively. In fact, similar series of confidence intervals for β̂RV10min was also

graphed by Andersen et al. (2006) in their Figures 13-15, except they used 10 minute and

daily data to calculate estimated betas over intervals of one quarter. In figure E.3, we see that

beta is estimated more precisely using full record transaction prices. The two parameters

in β̂TS were chosen as follows. We set G2 = 3 as no stocks (after synchronisation) display

autocorrelated returns beyond the second lag. G1 was chosen as 5G2. Recall that we choose

J = 500 and m = 3000, see Section 5.3.

Table E.2 contains the results of the test for constant betas for individual stocks. The

null hypothesis is that the true beta is constant over some time period. We implement the

test for five different time periods: the whole year 2006 and each quarter separately. This

means using k = 52 and k = 13 respectively in equation (10). Four different tests are

implemented based on four estimators: β̂RV5min , β̂
RV
10min , β̂

RV
20min and β̂TS . The reader should be

careful when interpreting the p-values since at this stage they are not adjusted to reflect

13RV-based beta (or realized beta) is defined as [X,Y ] / [X,X] , and the interval of estimation is the whole
year 2006.
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multiple testing. The null hypothesis of beta being constant over the whole year can be

rejected using a test based on any of the four estimators/frequencies. For shorter periods,

answer varies depending on the stock and the exact time period. The test based on β̂TS can

reject the null, at 5% level of significance, for all quarters with three exceptions (AIG Q1,

IBM Q1, MMM Q3). The tests based on moderate frequencies show similar results with

generally smaller number of rejections.

Table E.1 contains the results of the joint test for constant betas. The null hypothesis

tested is that the betas of all 6 stocks are constant across some time interval. We implement

the test for the same five time periods and the same estimators as in the univariate case.

One would in general expect that it is easier to detect beta variation jointly across stocks

(partly because more data is used, partly because the null is different and is less likely to be

true). Indeed, we see that with only one exception, even the moderate frequency estimators

now reject all null hypotheses.

Overall, it seems that tick data contain important additional information about the

variability in betas over time. This finding does not appear to be specific to the highest

frequency because RV-based beta at 5 minutes similarly contains more information than

RV-based beta at 20 minutes. It is well known that RV-based beta cannot be used at

frequencies much higher than 5 minutes without accounting for the market microstructure

noise. Our results suggest that the noise-robust estimators such as the β̂TS are able to

extract additional information on time variation in betas while being robust to the noise

contaminations.

6.3 Estimation of the Dynamics of Betas and the Impact of MEC

In this section, we illustrate empirically the OLS and MEC estimators introduced in Section

4.2. We follow Adrian and Franzoni (2009) and choose the following three regressors X

in equation (12): return on value-weighted market, the term spread, and the value spread.

The market is chosen as the S&P500 index; the term spread is constructed as the difference
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between the ten-year and the three-month constant maturity Treasury yield; the value spread

is chosen as the return to the HML factor from Fama and French (1992). For each of the

six stocks we estimate model (12) with p = 1 and p = 2, where the betas are estimated

by β̂TS. We first consider the case with only the intercept (Xi = 1). Then, we consider

Xi = (1,MKTi−1, TERMi−1, HMLi−1)
′, where MKTi−1, TERMi−1, and HMLi−1 are the

(low frequency) S&P500 return, the term spread and the value spread at the end of week

i− 1. For comparison, we include both the results for the naive OLS estimator θ̂OLS and for

the measurement error corrected estimator θ̂MEC . Table 1 presents the results.

Stock ρOLS1 ρOLS2 γOLS1 γOLSMKT γOLSTERM γOLSHML ρMEC
1 ρMEC

2 γMEC
1 γMEC

MKT γMEC
TERM γMEC

HML

AIG 0.60 0.31 0.73 0.21
AIG 0.56 0.09 0.27 0.81 -0.08 0.20
AIG 0.61 0.32 -0.27 0.06 -0.03 0.76 0.19 -0.43 0.04 -0.04
AIG 0.59 0.07 0.27 0.16 0.07 -0.03 0.89 -0.11 0.20 -0.02 0.07 -0.04

GE 0.24 0.45 0.32 0.41
GE 0.21 0.05 0.43 0.29 0.05 0.39
GE 0.24 0.45 1.60 0.08 0.01 0.34 0.40 1.69 0.07 0.02
GE 0.23 0.05 0.43 1.55 0.07 0.02 0.32 0.04 0.38 1.65 0.06 0.02

IBM 0.39 0.48 0.57 0.34
IBM 0.37 0.03 0.47 0.61 -0.09 0.38
IBM 0.33 0.55 0.17 0.13 -0.01 0.49 0.42 0.21 0.10 -0.01
IBM 0.33 -0.03 0.57 0.08 0.13 -0.01 0.57 -0.17 0.49 0.11 0.12 -0.01

INTC 0.64 0.42 0.68 0.37
INTC 0.44 0.31 0.28 0.46 0.31 0.25
INTC 0.40 0.60 3.73 -0.55 -0.01 0.45 0.56 3.70 -0.51 -0.00
INTC 0.31 0.17 0.51 1.69 -0.58 0.00 0.34 0.17 0.47 1.68 -0.55 0.00

MMM 0.58 0.39 0.74 0.23
MMM 0.51 0.10 0.35 0.78 -0.07 0.26
MMM 0.56 0.41 -0.89 -0.03 -0.04 0.73 0.25 -0.68 -0.00 -0.04
MMM 0.46 0.15 0.36 -1.62 -0.03 -0.04 0.70 0.01 0.27 -0.93 -0.02 -0.04

MSFT 0.43 0.46 0.48 0.43
MSFT 0.42 0.04 0.44 0.47 0.02 0.42
MSFT 0.35 0.53 0.18 -0.17 -0.07 0.39 0.50 0.19 -0.16 -0.07
MSFT 0.36 -0.02 0.53 -0.16 -0.19 -0.07 0.41 -0.05 0.51 -0.11 -0.18 -0.07

Table 1: Estimated dynamics of the betas. OLS and MEC estimators are described in Sections 4.2
and 6.3. Here ρj are the AR(p) coefficients, γ1 is the intercept, and γMKT , γTERM and γHML are
the coefficients on MKTi−1, TERMi−1, and HMLi−1.

Several comments are in order. The betas of all stocks appear to follow stationary
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mean-reverting processes, which is in line with the findings of Andersen et al. (2006) and

Adrian and Franzoni (2009). The measurement error corrections are substantial; the MEC

estimates indicate that betas are more persistent than the OLS estimates (suffering from the

attenuation bias) would suggest. This finding is in line with Hansen and Lunde (2014) who

use an instrumental variable approach. Our conditioning variables do not appear to be an

important determinants of the betas in our data set.14 It is worth noting that the estimates

for all of the considered stocks are qualitatively similar, which could be interpreted as an

illustration of the robustness of the methodology.

7 Conclusion

We propose a subsampling method to estimate the VCVs of high frequency estimators that

does not rely on knowing the expressions of these matrices. We prove the validity of the

multivariate inference method for a general class of estimators including many estimators

of the integrated covariance matrices; our assumptions are weaker than those available in

the literature in several empirically relevant directions. This multivariate method has the

appealing property of always giving estimates of the VCVs that are positive semi-definite.

Our simulation study suggests that when the asymptotic variance differs from the finite

sample variance, the subsampling-based inference is more reliable than the plug-in approach.

We consider two applications of the multivariate subsampling method to the study of time

variation in financial betas. First, we implement tests of beta time-invariance of six stocks

on the NYSE. Second, we provide and implement Measurement-Error-Corrected estimators

of the dynamics of betas in Adrian and Franzoni (2009). After the bias-correction, the betas

appear to be substantially more persistent than the naive estimators suggest.

14For the OLS estimator, MKT, TERM, and HML are not statistically significant for any of the stocks
and specifications (using Newey and West (1987) estimator of standard errors). Also, ρ2 is not significantly
different from zero for all stocks except INTC. We do not present the standard errors for the OLS and MEC
estimators since in the presence of leverage these would require an additional analysis that is beyond the
scope of this paper (see Andersen et al. (2005a) for a discussion).
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Appendix to “Inference for Nonparametric High-Frequency

Estimators with an Application to Time Variation in Betas”

by Ilze Kalnina

A Proofs

A.1 Proof of Theorem 1

Let

θlongl =

lm/n∫
(l−1)m/n

f (cu) du, θshortl =

[(l−1)m+J ]/n∫
(l−1)m/n

f (cu) du,

V long
l =

lm/n∫
(l−1)m/n

g (cu) du, V short
l =

[(l−1)m+J ]/n∫
(l−1)m/n

g (cu) du.

Sections A.1.1 and A.1.2 establish the following facts:

V −
K∑
l=1

m

J
V short
l = op(1) (A.1)

and
m

J

K∑
l=1

τ 2n

∥∥∥∥θshortl − J

m
θlongl

∥∥∥∥2 = op(1). (A.2)

Introduce the following notation,

V̂ infeasible =
1

K

K∑
l=1

n

J
τ 2nR

short
l

(
Rshort
l

)′
, where Rshort

l =
n

J
θ̂shortl − n

J
θshortl .

Assumption A4 with s = J and (A.1) imply V̂ infeasible − V = op(1). It remains to prove that

V̂ sub − V̂ infeasible = op(1). (A.3)

We rewrite this difference in terms of three types of components, dl, R
short
l , and Rlong

l , where

dl =
n

m
θlongl − n

J
θshortl ,

Rlong
l =

n

m
θ̂longl − n

m
θlongl .
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In particular, we can represent the differences in (A.3) as follows,

V̂ sub − V̂ infeasible =
J

n

1

K

K∑
l=1

τ 2n

(
−Rshort

l Rlong′
l −Rshort

l d′l −R
long
l Rshort′

l +Rlong
l Rlong′

l

+Rlong
l d′l − dlRshort′

l + dlR
long′
l + d′ld

′
l

)
. (A.4)

If we can show that

J

n

1

K

K∑
l=1

τ 2nR
short
l Rshort′

l = Op (1) , (A.5)

J

n

1

K

K∑
l=1

τ 2nR
long
l Rlong′

l = op (1) , (A.6)

J

n

1

K

K∑
l=1

τ 2ndld
′
l = op (1) , (A.7)

then all terms in (A.4) are negligible by the Cauchy-Schwarz inequality, e.g.,

∣∣∣∣∣Jn 1

K

K∑
l=1

τ 2n
(
Rshort
l d′l

)∣∣∣∣∣ ≤
√√√√J

n

1

K

K∑
l=1

τ 2n
(
Rshort
l Rshort′

l

)√√√√J

n

1

K

K∑
l=1

τ 2n (dld′l) = op (1) .

Equation (A.5) follows from V̂ infeasible = V + op(1), since the left-hand-side of equation (A.5)

is V̂ infeasible.

Equation (A.6) follows from

J

n

1

K

K∑
l=1

τ 2nR
long
l Rlong′

l =
J

m

[
1

K

n

m
V + op (1)

]
= op (1) . (A.8)

The first equality in the above follows by Assumption A4 with s = m, which can be written

as
1

K

K∑
l=1

m

n
τ 2nR

long
l Rlong′

l − 1

K

n

m
V = op(1),

since V =
∑K

l=1 V
long
l . The second equality in (A.8) follows by K = bn/mc and J/m = o (1) .

Equation (A.7) follows from equation (A.2), since the left-hand-side of (A.7) equals the

left-hand-side of (A.2) times n/(Km). �
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A.1.1 Proof of equation (A.1)

Let Ia,b =
b∫
a

‖cu − ca‖ du and Ia,b,t =
b∫
a

‖cu − ct‖ du. Consider a general-matrix valued

function η (c) : Rd×d → Rq1×q2 , and let

H
η

a,b =

b∫
a

η (cu) du for any 0 ≤ a ≤ b ≤ 1.

We prove the following Lemma at the end of this Section,

Lemma A.1. Suppose ϕ is a continuously differentiable functional. Let An ≤ an < bn ≤ Bn

be sequences with Bn−An → 0 as n→∞. Let ϕ∇ =
∑d

k1=1

∑d
k2=1 supt∈[0,1] |∂ϕ (ct)/ ∂ct,k1k2|.

Then ∣∣∣∣ 1

Bn − An
Hϕ
An,Bn

− 1

bn − an
Hϕ
an,bn

∣∣∣∣ ≤ ϕ∇ ×
{
IAn,an,an + Ian,Bn

Bn − An
+

Ian,bn
bn − an

}
.

To prove equation (A.1), consider any k1, k2 ∈ {1, . . . , d} and let ϕ (·) denote function

gk1k2 (·). We have

Vk1k2 −
K∑
l=1

m

J
V short
l,k1k2

=
K∑
l=1

(
V long
l,k1k2

− m

J
V short
l,k1k2

)
=

m

n

K∑
l=1

(
1

m/n
Hϕ

(l−1)m/n,lm/n −
1

J/n
Hϕ

(l−1)m/n,[(l−1)m+J ]/n

)
.

Applying Lemma A.1 we obtain∣∣∣∣∣Vk1k2 −
K∑
l=1

m

J
V short
l,k1k2

∣∣∣∣∣ ≤ m

n

K∑
l=1

∣∣∣∣ 1

m/n
Hϕ

(l−1)m/n,lm/n −
1

J/n
Hϕ

(l−1)m/n,[(l−1)m+J ]/n

∣∣∣∣
≤ ϕ∇

m

n

K∑
l=1

{
I(l−1)m/n,lm/n

m/n
+
I(l−1)m/n,[(l−1)m+J ]m/n

J/n

}
. (A.9)

Assumptions A1 and A2 imply ϕ∇ = OP (1). Using Assumption A2 and Holder inequality

we have E [‖ct1 − ct2‖] ≤ B
1/2
c |t1 − t2|α/2, so for all l, m, n we have

1

m/n
E
[
I(l−1)m/n,lm/n

]
≤ B1/2

c (m/n)α/2 and
1

J/n
E
[
I(l−1)m/n,[(l−1)m+J ]m/n

]
≤ B1/2

c (J/n)α/2 .
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Hence

E

[
m

n

K∑
l=1

{
I(l−1)m/n,lm/n

m/n
+
I(l−1)m/n,[(l−1)m+J ]m/n

J/n

}]
≤ B1/2

c K
m

n

((m
n

)α/2
+

(
J

n

)α/2)
= o (1) ,

as long as J/n → 0 and m/n → 0, since Km
n
→ 1. Using Markov inequality and equation

(A.9) we obtain Vk1k2 −
∑K

l=1
m
J
V short
l,k1k2

= oP (1) and hence equation (A.1) holds. �

Proof of Lemma A.1: We omit subscript n and replace An, an, bn, Bn with A, a, b, B,

respectively. ∣∣∣∣HA,B −
B − A
b− a

Ha,b

∣∣∣∣
=

∣∣∣∣∣∣
B∫
A

ϕ (cu) du−
B − A
b− a

b∫
a

ϕ (cu) du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
B∫
A

(ϕ (cu)− ϕ (ca)) du−
B − A
b− a

b∫
a

(ϕ (cu)− ϕ (ca)) du

∣∣∣∣∣∣
≤

B∫
A

|ϕ (cu)− ϕ (ca)| du+
B − A
b− a

b∫
a

|ϕ (cu)− ϕ (ca)| du

≤ ϕ∇


B∫
A

‖cu − ca‖ du+
B − A
b− a

b∫
a

‖cu − ca‖ du


≤ (B − A)ϕ∇

{
IA,a,a + Ia,B
B − A

+
Ia,b
b− a

}
. �

A.1.2 Proof of equation (A.2)

Fix any k and let ϕ (·) denote fk (·). Then, using Lemma A.1 in Section A.1.1,

K∑
j=1

(
θshortl,k − J

m
θlongl,k

)2

=

(
J

n

)2 K∑
j=1

(
1

J/n
θshortl,k − 1

m/n
θlongl,k

)2

≤
(
J

n

)2 K∑
j=1

ϕ∇
2

(
I(l−1)m/n,lm/n

m/n
+
I(l−1)m/n,[(l−1)m+J ]m/n

J/n

)2

≤ 2ϕ∇
2

(
J

n

)2 K∑
j=1

(
I2(l−1)m/n,lm/n

(m/n)2
+
I2(l−1)m/n,[(l−1)m+J ]m/n

(J/n)2

)
.

To bound the sum, notice that by Cauchy-Schwarz inequality and Assumption A2 for any

A-4



a < b,

1

(b− a)2
E
[
I2a,b
]

=
1

(b− a)2
E


 b∫

a

‖cu − ca‖ du

2


≤ 1

(b− a)2
E

(b− a)

b∫
a

‖cu − ca‖2 du

 ≤ Bc (b− a)α .

Thus,

E

[(
J

n

)2 K∑
j=1

(
I2(l−1)m/n,lm/n

(m/n)2
+
I2(l−1)m/n,[(l−1)m+J ]m/n

(J/n)2

)]

≤ Bc
J2

n2
K

((m
n

)α
+

(
J

n

)α)
≤ 2Bc

J2

nm

(m
n

)α
.

Hence, we can use Markov inequality and ϕ∇ = OP (1) to obtain

m

J

K∑
j=1

τ 2n

∣∣∣∣θshortl,k − J

m
θlongl,k

∣∣∣∣2 = OP

(
m

J
τ 2n
J2

nm

(m
n

)α)
= OP

(
τ 2n
Jmα

n1+α

)
,

so equation (A.2) follows from Assumption A3. �

B Proof of Lemma 2

The proof follows closely Comte and Renault (1998). The process x(t) = 1
2

ln ct can also be

written as x(t) =
∫ t
0
a(t− s)dW (s) with

a(x) =
γ

Γ(1 + α)

(
xα − κe−κx

∫ x

0

eκuuαdu

)
and W (s) a standard Brownian Motion. Let t1 ≤ t2. We have

E (ct2 − ct1)
2

= E (exp(2x(t2))− exp(2x(t1)))
2

= e8
∫ t1
0 a2(x)dx + e8

∫ t2
0 a2(x)dx − 2e2

∫ t1
0 a2(x)dx+2

∫ t2
0 a2(x)dx+4

∫ t1
0 a(x)(a(t2−t1+x))dx

= e8
∫ t2
0 a2(x)dx

(
1 + e−8

∫ t2
t1
a2(x)dx − 2e−6

∫ t1
0 a2(x)dx−4

∫ t1
0 a(x)(a(x)−a(t2−t1+x))dx

)
≤ 2e8

∫ t2
0 a2(x)dx

(
1− e−6

∫ t2
t1
a2(x)dx−4

∫ t1
0 a(x)(a(x)−a(t2−t1+x))dx

)
.
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The term inside the last parenthesis is necessarily nonnegative, and the term in the last

exponential is nonpositive. Moreover |
∫ t2
t1
a2(x)dx| ≤M2

1 |t2− t1| with M1 = supx∈[0,1] |a(x)|,
and since a is α-Hölder,∣∣∣∣∫ t1

0

a(x)(a(x)− a(t2 − t1 + x))dx

∣∣∣∣ ≤ Cα |t2 − t1|α
∫ t1

0

|a(x)| dx ≤ Cα |t2 − t1|αM1,

we have ∣∣∣∣∫ t2

t1

a2(x)dx+

∫ t2

0

a(x) (a(x)− a(t2 − t1 + x)) dx

∣∣∣∣ ≤M2 |t2 − t1|α .

Finally, use ∀u ≤ 0, 0 ≤ 1− eu ≤ |u|, to conclude Assumption A2 with α = α. �

C Proof of Corollary 3

We prove Corollary 3 by verifying the assumptions of Theorem 1. Assumption A1 is clearly

satisfied with f(u) = cu and g(u) such that its (1, 1) element is

g11(u) = ϕTS
4

3
c2u,11 + 8(ϕTS)−2V ar

(
εF
)2

+ 16(ϕTS)−2 lim
n→∞

n∑
i=1

Cov
(
εF0 , ε

F
i/n

)2
, (A.10)

and other elements of g(u) are defined similarly (see Footnote 6 for details). Assumption A2

is directly assumed in the statement of Corollary (sufficient conditions are discussed after

the statement of Assumption A2 in Section 2). Assumption A3 is the restriction on the

subsample sizes, which is also directly assumed by the statement of the Corollary. For the

case s = J , Assumption A4 is verified by the analogue of Lemma 7 of Kalnina (2011) for the

multivariate case, where instead of adapting the results of Zhang et al. (2005) to a shrinking

subsample, one uses the corresponding results of Zhang (2011). The proof of the case s = m

of Assumption A4 is the same. �

D Data: Summary Statistics
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trans./week ω̂2 · 107 ω̃2 · 107 ξ̂ · 105 acf(1) acf(2) acf(3)

AIG 18,029 0.207 0.136 0.156 -0.320 0.102 -0.014
GE 29,015 0.228 0.188 0.189 -0.582 0.248 -0.118
IBM 20,070 0.162 0.095 0.117 -0.302 0.081 0.008
INTC 35,267 0.518 0.407 0.127 -0.525 0.200 -0.085
MMM 14,005 0.284 0.123 0.121 -0.269 0.092 0.006
MSFT 32,421 0.338 0.282 0.178 -0.555 0.224 -0.100
SPY 39,801 0.037 0.018 0.048 -0.352 0.065 0.006

Table D.1: Summary statistics of data before the synchronization. First column contains average
number of transactions per week. Second and third columns contains variance of the noise estimates
over the whole year 2006 using estimators in (16) and (17). Fourth column contains estimated

noise-to-signal ratio, ξ̂ = ω̂2/ÎV where IV is estimated by the TSRV. Last three columns contain
autocorrelation functions of returns at first, second, and third lag.

trans./week ω̂2 · 107 ω̃2 · 107 ξ̂ · 105 acf(1) acf(2) acf(3)

AIG(SPY) 15,425 0.220 0.138 0.282 -0.15 0.051 0.02
GE(SPY) 21,819 0.229 0.176 0.295 -0.221 0.058 0.015
IBM(SPY) 16,890 0.174 0.095 0.223 -0.166 0.052 0.021
INTC(SPY) 24,601 0.545 0.384 0.700 -0.247 0.060 0.016
MMM(SPY) 12,315 0.303 0.121 0.389 -0.114 0.048 0.014
MSFT(SPY) 23,322 0.347 0.267 0.451 -0.238 0.061 0.017

SPY(AIG) 15,425 0.059 0.011 0.045 -0.276 0.084 -0.006
SPY(GE) 21,819 0.049 0.014 0.040 -0.509 0.173 -0.059
SPY(IBM) 16,890 0.056 0.011 0.040 -0.257 0.069 0.011
SPY(INTC) 24,601 0.045 0.014 0.011 -0.439 0.132 -0.041
SPY(MMM) 12,315 0.071 0.011 0.031 -0.232 0.082 0.013
SPY(MSFT) 23,322 0.046 0.014 0.024 -0.476 0.155 -0.051

AIG(joint) 6,957 0.037 0.018 0.273 -0.111 0.010 -0.007
GE(joint) 6,957 0.032 0.015 0.262 -0.218 0.028 0.005
IBM(joint) 6,957 0.032 0.013 0.228 -0.08 0.010 -0.003
INTC(joint) 6,957 0.094 0.037 0.227 -0.174 0.002 -0.006
MMM(joint) 6,957 0.046 0.014 0.197 -0.103 0.032 0.003
MSFT(joint) 6,957 0.054 0.027 0.277 -0.199 0.013 -0.004
SPY(joint) 6,957 0.011 0.001 0.145 -0.014 0.028 0.010

Table D.2: Summary statistics of the data after the synchronization. The notation “AIG(SPY)”
means stock AIG after it has been synchronized with SPY. By construction, number of transactions
of AIG(SPY) is the same as that of SPY(AIG). AIG(joint) means stock AIG after it has been
synchronised with the other 6 series. See Table D.1 annotation for the meaning of the other column
entries.
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Figure D.3: Average weekly realised betas of individual stocks against the frequency (in ticks) used
in their calculation.
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E Empirical Analysis: Figures and Tables

β̂RV5min β̂RV10min β̂RV20min β̂TS

2006 937.6 (0) 700.8 (0) 545.2 (0) 3286.8 (0)
Q1 107.2 (0.005) 98.1 (0.022) 85.2 (0.138) 445.7 (0)
Q2 147.1 (0) 114.9 (0.001) 106.9 (0.005) 289.2 (0)
Q3 296.8 (0) 222.5 (0) 140.6 (0) 671.3 (0)
Q4 172.4 (0) 145.9 (0) 154.7 (0) 542.9 (0)

Table E.1: Values of the joint Chi-square test statistic (see section 4.1); corresponding p-values in
parenthesis. The null hypothesis is that the true betas for all 6 stocks are time-invariant over the
time interval specified in the first column. First three methods (labelled β̂RV5min, β̂RV10min, and β̂RV20min )
are based on the realized covariance and the estimator of Barndorff-Nielsen and Shephard (2004) of
its asymptotic variance; for the last column, Two Scale method is used for point estimates of betas,
and subsampling method is used to estimate their asymptotic variance-covariance matrices.
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2006 Q1 Q2 Q3 Q4

Test based on β̂RV5min

AIG 177.32 (0) 20.37 (0.06) 35.09 (0) 46.79 (0) 41.43 (0)
GE 125.94 (0) 12.38 (0.416) 29.49 (0.003) 35.44 (0) 19.73 (0.072)
IBM 109.66 (0) 16.81 (0.157) 27.84 (0.006) 26.07 (0.011) 14.79 (0.253)
INTC 457.06 (0) 75.57 (0) 62.42 (0) 53.76 (0) 35.38 (0)
MMM 183.03 (0) 25.73 (0.012) 38.28 (0) 22.82 (0.029) 51.27 (0)
MSFT 282.25 (0) 19.57 (0.076) 97.53 (0) 87.92 (0) 46.59 (0)

Test based on β̂RV10min

AIG 101.53 (0) 19.77 (0.071) 19.37 (0.08) 18.26 (0.108) 26.23 (0.01)
GE 98.04 (0) 21.89 (0.039) 29.30 (0.004) 26.84 (0.008) 11.31 (0.503)
IBM 94.37 (0) 22.80 (0.029) 23.04 (0.027) 9.21 (0.685) 10.32 (0.588)
INTC 354.08 (0) 60.16 (0) 56.12 (0) 36.89 (0) 17.61 (0.128)
MMM 109.51 (0) 13.01 (0.368) 26.34 (0.01) 14.62 (0.263) 33.46 (0.001)
MSFT 171.86 (0) 15.58 (0.211) 43.02 (0) 50.03 (0) 33.49 (0.001)

Test based on β̂RV20min

AIG 79.93 (0.006) 26.59 (0.009) 12.66 (0.394) 9.68 (0.644) 18.99 (0.089)
GE 93.09 (0) 18.93 (0.09) 21.75 (0.04) 19.71 (0.073) 18.80 (0.093)
IBM 98.63 (0) 14.20 (0.288) 29.32 (0.004) 12.89 (0.377) 9.40 (0.668)
INTC 261.08 (0) 64.63 (0) 44.82 (0) 13.34 (0.345) 22.26 (0.035)
MMM 82.87 (0.003) 14.27 (0.284) 14.50 (0.27) 13.41 (0.34) 23.12 (0.027)
MSFT 104.92 (0) 21.23 (0.047) 19.97 (0.068) 24.02 (0.02) 18.53 (0.101)

Test based on β̂TS

AIG 333.65 (0) 17.59 (0.129) 59.45 (0) 114.00 (0) 41.42 (0)
GE 238.62 (0) 44.07 (0) 69.14 (0) 54.92 (0) 51.61 (0)
IBM 178.97 (0) 14.08 (0.295) 37.63 (0) 43.27 (0) 35.83 (0)
INTC 1111.55 (0) 153.92 (0) 83.24 (0) 106.38 (0) 49.51 (0)
MMM 268.93 (0) 47.89 (0) 36.55 (0) 17.07 (0.147) 82.21 (0)
MSFT 623.50 (0) 45.71 (0) 128.26 (0) 178.41 (0) 121.23 (0)

Table E.2: Values of the Chi-square test statistic; corresponding p-values in parenthesis. The null
hypothesis is that true betas are constant over the time interval specified in the top row (2016, Q1,
Q2, Q3, or Q4).
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Figure E.3: Estimated betas for AIG, GE, IBM, INTC, MMM, and MSFT with 95% confidence
intervals. Filled dots with rectangular CIs correspond to β̂RV10min, empty dots with error-bar-type

CIs correspond to β̂TS. Weeks on the x-axis.

A-11



M Monte Carlo Simulations: Tables

ξ = 0.0000 ξ = 0.0001
(1) (2) (3) (4) (5) (6) (1) (2) (3) (4) (5) (6)

RMSE×10 of β̂TS

G1 = 3 0.10 0.10 0.11 0.06 0.11 0.08 0.17 0.19 0.19 0.13 0.18 0.17
G1 = 5 0.12 0.11 0.13 0.06 0.13 0.09 0.15 0.14 0.16 0.09 0.16 0.12
G1 = 10 0.15 0.14 0.16 0.08 0.17 0.12 0.16 0.15 0.17 0.09 0.18 0.13
G1 = 20 0.21 0.19 0.22 0.11 0.23 0.16 0.21 0.19 0.23 0.11 0.24 0.16
G1 = 50 0.31 0.30 0.34 0.17 0.35 0.25 0.31 0.30 0.34 0.18 0.35 0.25
G1 = 70 0.37 0.35 0.40 0.20 0.41 0.29 0.37 0.35 0.40 0.21 0.41 0.29

Mean values of G1 selected by each rule
GBR

1 1.71 1.71 1.71 1.71 1.71 1.71 5.22 6.21 5.44 6.56 4.69 6.38

ĜBR
1 1.77 1.77 1.77 1.76 1.77 1.77 2.05 2.15 2.06 2.19 1.98 2.18
G?

1 0.00 0.00 0.00 0.00 0.00 0.00 3.17 4.04 3.36 4.36 2.72 4.20

Ĝ?
1 0.27 0.27 0.27 0.26 0.26 0.26 0.71 0.84 0.73 0.90 0.62 0.88

Table M.1: The last four rows denote the averages across simulations of GBR1 , ĜBR1 , G?1, and Ĝ?1
defined in Section 5.2. The top rows show the RMSE times a factor of 10 of the β̂TS for different
values of the TS parameter G1 and different scenarios (1)-(6). ξ is the noise-to-signal ratio.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3, VFS = 0.755 (V pl = 0.363, V Theo = 0.357)

100 0.703 0.699 0.697 0.697 0.697 0.697 0.693 0.695 0.693
200 0.726 0.721 0.719 0.719 0.720 0.719 0.716 0.719 0.717
300 0.734 0.728 0.726 0.726 0.727 0.727 0.723 0.726 0.723
400 0.738 0.732 0.730 0.730 0.732 0.733 0.728 0.729 0.729
500 0.734 0.732 0.734 0.736 0.736 0.732 0.733 0.735
600 0.737 0.734 0.736 0.739 0.740 0.733 0.736 0.734
800 0.744 0.737 0.739 0.742 0.744 0.738 0.740 0.744
1000 0.739 0.742 0.746 0.745 0.741 0.743 0.748

G1 = 5, VFS = 0.983 (V pl = 0.604, V Theo = 0.595)

100 0.885 0.881 0.879 0.878 0.877 0.877 0.873 0.873 0.872
200 0.926 0.923 0.919 0.920 0.920 0.920 0.914 0.918 0.916
300 0.941 0.939 0.935 0.934 0.935 0.934 0.930 0.932 0.929
400 0.939 0.944 0.941 0.940 0.942 0.942 0.937 0.939 0.938
500 0.947 0.945 0.943 0.946 0.947 0.942 0.945 0.946
600 0.949 0.946 0.946 0.949 0.951 0.945 0.949 0.947
800 0.953 0.952 0.950 0.953 0.956 0.951 0.955 0.959
1000 0.954 0.954 0.957 0.958 0.956 0.960 0.966

G1 = 10, VFS = 1.594 (V pl = 1.208, V Theo = 1.189)

100 1.337 1.329 1.323 1.322 1.317 1.318 1.309 1.315 1.310
200 1.448 1.447 1.441 1.439 1.436 1.435 1.432 1.436 1.433
300 1.483 1.489 1.484 1.481 1.477 1.477 1.474 1.479 1.475
400 1.469 1.509 1.503 1.497 1.495 1.496 1.495 1.499 1.498
500 1.516 1.515 1.507 1.505 1.508 1.508 1.514 1.513
600 1.519 1.521 1.513 1.511 1.516 1.515 1.523 1.521
800 1.511 1.528 1.521 1.519 1.525 1.528 1.536 1.538
1000 1.529 1.524 1.526 1.531 1.539 1.546 1.549

G1 = 20, VFS = 2.778 (V pl = 2.415, V Theo = 2.379)

100 2.060 2.029 2.015 2.007 1.998 1.996 1.988 1.991 1.975
200 2.415 2.405 2.391 2.381 2.373 2.369 2.367 2.364 2.359
300 2.509 2.533 2.520 2.508 2.497 2.496 2.493 2.497 2.483
400 2.445 2.591 2.577 2.563 2.553 2.552 2.548 2.554 2.539
500 2.614 2.611 2.597 2.586 2.586 2.582 2.588 2.580
600 2.627 2.635 2.619 2.608 2.610 2.609 2.616 2.601
800 2.592 2.657 2.639 2.635 2.637 2.642 2.646 2.639
1000 2.660 2.650 2.653 2.654 2.663 2.668 2.662

G1 = 50, VFS = 6.236 (V pl = 6.071, V Theo = 5.947)

100 2.660 2.474 2.403 2.362 2.332 2.313 2.291 2.282 2.248
200 4.529 4.452 4.399 4.349 4.323 4.307 4.281 4.257 4.244
300 4.965 5.110 5.072 5.023 4.993 4.984 4.951 4.934 4.911
400 4.560 5.415 5.396 5.349 5.315 5.309 5.274 5.265 5.239
500 5.565 5.579 5.536 5.505 5.499 5.469 5.457 5.432
600 5.632 5.699 5.664 5.635 5.634 5.601 5.590 5.564
800 5.437 5.814 5.803 5.790 5.791 5.762 5.748 5.727
1000 5.820 5.869 5.886 5.880 5.859 5.837 5.821

Table M.2: Sensitivity and choice of subsampling parameters J and m for the estimation of the variance
of β̂TS (times 100). The numbers in the table represent average variance estimated by the subsampling
estimator over N = 1000 replications. Scenario (3). These numbers are to be compared with the actual

variability of β̂TS , V FS , which is the average over simulations of n1/3
(
β̂TS − β

)2
. Noise-to-signal ratio is

ξ = 0.0000.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3, VFS = 2.549 (V pl = 0.879, V Theo = 0.798)

100 2.442 2.429 2.420 2.421 2.416 2.416 2.418 2.420 2.415
200 2.527 2.511 2.495 2.494 2.497 2.493 2.490 2.499 2.500
300 2.572 2.541 2.522 2.518 2.523 2.517 2.513 2.524 2.520
400 2.620 2.551 2.530 2.528 2.533 2.530 2.528 2.530 2.534
500 2.553 2.534 2.533 2.533 2.533 2.527 2.535 2.540
600 2.558 2.537 2.536 2.536 2.539 2.529 2.542 2.535
800 2.601 2.557 2.549 2.548 2.552 2.543 2.551 2.553
1000 2.569 2.557 2.556 2.553 2.550 2.554 2.559

G1 = 5, VFS = 1.694 (V pl = 0.883, V Theo = 0.754)

100 1.504 1.495 1.487 1.489 1.483 1.486 1.480 1.483 1.474
200 1.571 1.556 1.544 1.549 1.548 1.544 1.539 1.541 1.539
300 1.599 1.581 1.567 1.568 1.569 1.563 1.558 1.560 1.556
400 1.619 1.589 1.574 1.575 1.578 1.575 1.570 1.572 1.568
500 1.593 1.577 1.577 1.581 1.579 1.575 1.578 1.575
600 1.596 1.581 1.583 1.585 1.585 1.577 1.582 1.577
800 1.617 1.596 1.592 1.594 1.595 1.588 1.592 1.591
1000 1.606 1.601 1.599 1.597 1.594 1.600 1.598

G1 = 10, VFS = 1.867 (V pl = 1.485, V Theo = 1.229)

100 1.541 1.531 1.523 1.522 1.517 1.517 1.508 1.514 1.508
200 1.665 1.659 1.655 1.653 1.649 1.648 1.644 1.647 1.643
300 1.707 1.708 1.703 1.701 1.696 1.693 1.691 1.694 1.692
400 1.704 1.729 1.724 1.721 1.716 1.715 1.714 1.718 1.716
500 1.739 1.737 1.732 1.728 1.728 1.729 1.734 1.731
600 1.745 1.747 1.742 1.737 1.739 1.737 1.743 1.739
800 1.740 1.757 1.750 1.745 1.748 1.750 1.756 1.753
1000 1.759 1.753 1.751 1.754 1.759 1.763 1.759

G1 = 20, VFS = 2.917 (V pl = 2.900, V Theo = 2.389)

100 2.139 2.106 2.091 2.083 2.075 2.071 2.063 2.066 2.050
200 2.506 2.493 2.477 2.467 2.459 2.452 2.452 2.448 2.443
300 2.603 2.624 2.609 2.596 2.585 2.580 2.579 2.585 2.570
400 2.545 2.684 2.666 2.651 2.640 2.638 2.633 2.640 2.625
500 2.708 2.701 2.685 2.672 2.671 2.667 2.674 2.665
600 2.722 2.725 2.707 2.694 2.695 2.694 2.701 2.686
800 2.688 2.748 2.728 2.721 2.722 2.728 2.730 2.723
1000 2.757 2.740 2.739 2.739 2.749 2.753 2.746

G1 = 50, VFS = 6.317 (V pl = 7.263, V Theo = 5.949)

100 2.680 2.490 2.419 2.378 2.348 2.329 2.307 2.296 2.264
200 4.556 4.475 4.420 4.371 4.345 4.330 4.302 4.279 4.267
300 4.994 5.132 5.095 5.046 5.016 5.007 4.973 4.958 4.935
400 4.593 5.439 5.419 5.372 5.339 5.334 5.296 5.289 5.263
500 5.590 5.602 5.560 5.530 5.523 5.491 5.482 5.456
600 5.659 5.724 5.690 5.662 5.660 5.624 5.616 5.589
800 5.468 5.840 5.830 5.817 5.817 5.787 5.774 5.754
1000 5.848 5.897 5.915 5.907 5.887 5.864 5.849

Table M.3: Sensitivity and choice of subsampling parameters J and m for the estimation of the variance
of β̂TS (times 100). The numbers in the table represent average variance estimated by the subsampling
estimator over N = 1000 replications. Scenario (3). These numbers are to be compared with the actual

variability of β̂TS , V FS , which is the average over simulations of n1/3
(
β̂TS − β

)2
. Noise-to-signal ratio is

ξ = 0.0001.

A-14



J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3 (coverage is 0.825 for V pl and 0.822 for V Theo)

100 0.943 0.939 0.939 0.939 0.944 0.938 0.935 0.937 0.938
200 0.950 0.944 0.944 0.947 0.949 0.947 0.947 0.943 0.944
300 0.949 0.948 0.946 0.946 0.948 0.947 0.944 0.940 0.942
400 0.951 0.945 0.947 0.949 0.946 0.944 0.941 0.938 0.936
500 0.944 0.944 0.943 0.942 0.942 0.941 0.936 0.930
600 0.945 0.945 0.941 0.940 0.939 0.936 0.938 0.930
800 0.949 0.947 0.941 0.935 0.933 0.933 0.933 0.927
1000 0.949 0.940 0.935 0.935 0.930 0.933 0.924

G1 = 5 (coverage is 0.870 for V pl and 0.874 for V Theo)

100 0.938 0.938 0.937 0.937 0.936 0.940 0.935 0.938 0.934
200 0.945 0.943 0.943 0.946 0.946 0.944 0.941 0.938 0.941
300 0.945 0.943 0.939 0.942 0.941 0.942 0.941 0.941 0.938
400 0.943 0.942 0.939 0.941 0.938 0.939 0.937 0.938 0.939
500 0.945 0.944 0.939 0.937 0.935 0.937 0.939 0.937
600 0.945 0.945 0.935 0.937 0.934 0.934 0.935 0.933
800 0.945 0.947 0.935 0.933 0.933 0.931 0.931 0.930
1000 0.945 0.938 0.932 0.933 0.931 0.926 0.926

G1 = 10 (coverage is 0.907 for V pl and 0.907 for V Theo)

100 0.929 0.929 0.926 0.926 0.924 0.922 0.925 0.927 0.925
200 0.943 0.937 0.935 0.933 0.937 0.934 0.937 0.936 0.935
300 0.943 0.941 0.935 0.938 0.938 0.935 0.939 0.938 0.938
400 0.940 0.943 0.938 0.939 0.937 0.937 0.934 0.939 0.939
500 0.941 0.938 0.936 0.934 0.934 0.934 0.935 0.934
600 0.939 0.935 0.934 0.932 0.937 0.930 0.933 0.936
800 0.943 0.937 0.936 0.929 0.935 0.931 0.932 0.929
1000 0.945 0.934 0.934 0.931 0.923 0.929 0.926

G1 = 20 (coverage is 0.940 for V pl and 0.938 for V Theo)

100 0.916 0.915 0.912 0.911 0.909 0.905 0.908 0.906 0.899
200 0.942 0.937 0.938 0.938 0.936 0.936 0.938 0.938 0.934
300 0.944 0.941 0.945 0.941 0.942 0.941 0.942 0.938 0.937
400 0.940 0.939 0.942 0.941 0.944 0.940 0.939 0.943 0.939
500 0.944 0.942 0.944 0.943 0.940 0.941 0.941 0.940
600 0.946 0.943 0.946 0.941 0.942 0.940 0.942 0.936
800 0.949 0.946 0.939 0.937 0.938 0.939 0.945 0.938
1000 0.946 0.941 0.937 0.935 0.938 0.942 0.937

G1 = 50 (coverage is 0.947 for V pl and 0.945 for V Theo)

100 0.798 0.780 0.771 0.760 0.765 0.763 0.756 0.759 0.750
200 0.900 0.897 0.895 0.893 0.891 0.893 0.892 0.891 0.887
300 0.914 0.915 0.913 0.910 0.909 0.913 0.912 0.914 0.912
400 0.909 0.924 0.922 0.919 0.919 0.923 0.917 0.920 0.917
500 0.927 0.924 0.921 0.925 0.928 0.926 0.920 0.921
600 0.929 0.928 0.926 0.932 0.930 0.929 0.924 0.921
800 0.929 0.933 0.932 0.931 0.930 0.926 0.927 0.921
1000 0.937 0.935 0.931 0.930 0.921 0.922 0.919

Table M.4: Sensitivity and choice of subsampling parameters J and m for the coverage of the confidence
interval for β̂TS . The numbers in the table represent empirical coverage rate of the subsampling estimator
over N = 1000 replications. Scenario (3). The nominal coverage rate is 0.95. Noise-to-signal ratio is
ξ = 0.0000.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3 (coverage is 0.754 for V pl and 0.740 for V Theo)

100 0.949 0.947 0.950 0.946 0.947 0.948 0.946 0.948 0.945
200 0.952 0.951 0.946 0.946 0.943 0.946 0.944 0.944 0.943
300 0.951 0.953 0.948 0.944 0.945 0.944 0.945 0.944 0.943
400 0.956 0.951 0.949 0.943 0.943 0.943 0.943 0.944 0.942
500 0.950 0.948 0.942 0.939 0.936 0.938 0.935 0.932
600 0.948 0.947 0.940 0.941 0.936 0.933 0.936 0.934
800 0.952 0.942 0.941 0.937 0.937 0.931 0.931 0.930
1000 0.949 0.942 0.937 0.933 0.926 0.929 0.931

G1 = 5 (coverage is 0.846 for V pl and 0.818 for V Theo)

100 0.933 0.933 0.929 0.932 0.932 0.931 0.934 0.926 0.927
200 0.938 0.937 0.936 0.935 0.940 0.933 0.934 0.934 0.935
300 0.936 0.939 0.935 0.938 0.943 0.937 0.936 0.933 0.932
400 0.937 0.941 0.934 0.935 0.940 0.934 0.931 0.934 0.931
500 0.941 0.933 0.936 0.938 0.932 0.926 0.928 0.929
600 0.938 0.934 0.935 0.934 0.933 0.927 0.928 0.927
800 0.941 0.936 0.936 0.930 0.931 0.924 0.929 0.925
1000 0.944 0.941 0.932 0.927 0.922 0.922 0.925

G1 = 10 (coverage is 0.917 for V pl and 0.882 for V Theo)

100 0.919 0.917 0.916 0.920 0.915 0.916 0.918 0.914 0.917
200 0.931 0.924 0.927 0.927 0.925 0.926 0.922 0.926 0.927
300 0.938 0.929 0.932 0.929 0.926 0.925 0.928 0.929 0.923
400 0.933 0.931 0.929 0.930 0.927 0.928 0.924 0.926 0.922
500 0.931 0.929 0.929 0.928 0.925 0.925 0.923 0.923
600 0.932 0.932 0.926 0.927 0.926 0.926 0.925 0.921
800 0.934 0.937 0.928 0.926 0.926 0.925 0.927 0.920
1000 0.934 0.932 0.927 0.923 0.925 0.924 0.919

G1 = 20 (coverage is 0.959 for V pl and 0.937 for V Theo)

100 0.913 0.903 0.904 0.903 0.899 0.899 0.902 0.897 0.903
200 0.937 0.931 0.931 0.939 0.934 0.935 0.934 0.933 0.932
300 0.945 0.933 0.940 0.941 0.940 0.941 0.938 0.937 0.936
400 0.942 0.938 0.942 0.939 0.938 0.943 0.937 0.939 0.936
500 0.940 0.946 0.943 0.937 0.936 0.936 0.939 0.936
600 0.945 0.945 0.940 0.935 0.936 0.938 0.937 0.933
800 0.950 0.945 0.936 0.933 0.935 0.938 0.937 0.939
1000 0.947 0.940 0.937 0.936 0.941 0.942 0.937

G1 = 50 (coverage is 0.968 for V pl and 0.943 for V Theo)

100 0.798 0.784 0.776 0.768 0.771 0.764 0.757 0.761 0.747
200 0.893 0.891 0.890 0.888 0.887 0.888 0.886 0.888 0.889
300 0.912 0.911 0.910 0.908 0.904 0.911 0.913 0.912 0.911
400 0.907 0.921 0.923 0.919 0.918 0.921 0.921 0.921 0.919
500 0.926 0.925 0.923 0.920 0.924 0.922 0.925 0.920
600 0.931 0.926 0.928 0.929 0.929 0.928 0.927 0.918
800 0.925 0.929 0.932 0.931 0.926 0.926 0.920 0.921
1000 0.936 0.932 0.927 0.923 0.920 0.916 0.914

Table M.5: Sensitivity and choice of subsampling parameters J and m for the coverage of the confidence
interval for β̂TS . The numbers in the table represent empirical coverage rate of the subsampling estimator
over N = 1000 replications. Scenario (3). The nominal coverage rate is 0.95. Noise-to-signal ratio is
ξ = 0.0001.
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V̂ sub V̂ pl V Theo V FS V̂ sub V̂ pl V Theo V FS

(1) (2)
G1 = 3 1.005 0.493 0.485 1.031 1.379 0.700 0.692 1.434
G1 = 5 1.294 0.822 0.808 1.340 1.782 1.166 1.154 1.886
G1 = 10 2.054 1.643 1.615 2.143 2.864 2.332 2.307 3.050
G1 = 20 3.513 3.286 3.231 3.668 5.003 4.661 4.614 5.521
G1 = 50 7.450 8.273 8.076 8.335 10.717 11.675 11.535 12.180

(3) (4)
G1 = 3 0.736 0.363 0.357 0.755 1.213 0.584 0.572 1.207
G1 = 5 0.947 0.604 0.595 0.983 1.563 0.973 0.953 1.569
G1 = 10 1.508 1.208 1.189 1.594 2.463 1.945 1.907 2.620
G1 = 20 2.586 2.415 2.379 2.778 4.165 3.893 3.814 4.435
G1 = 50 5.499 6.071 5.947 6.236 8.782 9.842 9.534 10.230

(5) (6)
G1 = 3 1.213 0.584 0.572 1.207 1.085 0.539 0.529 1.079
G1 = 5 1.563 0.973 0.953 1.569 1.406 0.898 0.881 1.425
G1 = 10 2.463 1.945 1.907 2.620 2.237 1.796 1.762 2.373
G1 = 20 4.165 3.893 3.814 4.435 3.823 3.590 3.524 4.071
G1 = 50 8.782 9.842 9.534 10.230 8.131 9.044 8.810 9.154

Table M.6: The average over simulations of the following measures of dispersion of β̂TS (times
102): the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl,

the (unobserved) asymptotic variance V Theo, and an average over simulations of n1/3
(
β̂TS − β

)2
denoted by V FS. Scenarios (1)-(6) are described in Section 5. J = 500, m = 3000, and ξ = 0.0000.
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V̂ sub V̂ pl V Theo V FS V̂ sub V̂ pl V Theo V FS

(1) (2)
G1 = 3 3.118 1.100 0.988 3.410 8.029 2.738 2.581 8.429
G1 = 5 2.061 1.167 0.989 2.279 3.969 2.084 1.834 4.399
G1 = 10 2.326 2.016 1.661 2.472 3.579 2.977 2.477 4.004
G1 = 20 3.619 3.952 3.242 3.822 5.267 5.654 4.657 5.906
G1 = 50 7.485 9.930 8.078 8.412 10.791 14.075 11.542 12.380

(3) (4)
G1 = 3 2.533 0.879 0.798 2.549 2.997 1.080 0.953 3.186
G1 = 5 1.579 0.883 0.754 1.694 2.247 1.298 1.090 2.376
G1 = 10 1.728 1.485 1.229 1.867 2.711 2.356 1.941 2.933
G1 = 20 2.671 2.900 2.389 2.917 4.270 4.657 3.822 4.596
G1 = 50 5.523 7.263 5.949 6.317 8.814 11.753 9.536 10.290

(5) (6)
G1 = 3 2.997 1.080 0.953 3.186 3.209 1.143 1.022 3.346
G1 = 5 2.247 1.298 1.090 2.376 2.178 1.252 1.058 2.387
G1 = 10 2.711 2.356 1.941 2.933 2.507 2.192 1.806 2.746
G1 = 20 4.270 4.657 3.822 4.596 3.931 4.306 3.535 4.227
G1 = 50 8.814 11.753 9.536 10.290 8.167 10.822 8.812 9.225

Table M.7: The average over simulations of the following measures of dispersion of β̂TS (times
102): the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl,

the (unobserved) asymptotic variance V Theo, and an average over simulations of n1/3
(
β̂TS − β

)2
denoted by V FS. Scenarios (1)-(6) are described in Section 5. J = 500, m = 3000, and ξ = 0.0001.
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tsub tpl tTheo tsub tpl tTheo

(1) (2)
G1 = 3 0.938 0.821 0.824 0.938 0.834 0.820
G1 = 5 0.939 0.865 0.874 0.941 0.877 0.874
G1 = 10 0.937 0.908 0.909 0.939 0.910 0.918
G1 = 20 0.939 0.942 0.940 0.930 0.932 0.930
G1 = 50 0.922 0.944 0.943 0.928 0.948 0.954

(3) (4)
G1 = 3 0.942 0.825 0.822 0.941 0.821 0.819
G1 = 5 0.935 0.870 0.874 0.933 0.872 0.870
G1 = 10 0.934 0.907 0.907 0.934 0.913 0.912
G1 = 20 0.940 0.940 0.938 0.942 0.941 0.937
G1 = 50 0.928 0.947 0.945 0.914 0.941 0.938

(5) (6)
G1 = 3 0.941 0.821 0.819 0.942 0.832 0.827
G1 = 5 0.933 0.872 0.870 0.938 0.883 0.876
G1 = 10 0.934 0.913 0.912 0.940 0.919 0.914
G1 = 20 0.942 0.941 0.937 0.940 0.940 0.940
G1 = 50 0.914 0.941 0.938 0.927 0.943 0.943

Table M.8: Coverage of the confidence interval of β̂TS based on the following measures of dispersion
of β̂TS: the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance
V̂ pl, and the (unobserved) asymptotic variance V Theo. Scenarios (1)-(6) are described in Section
5. J = 500, m = 3000, and ξ = 0.0000.
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tsub tpl tTheo tsub tpl tTheo

(1) (2)
G1 = 3 0.928 0.746 0.720 0.952 0.751 0.734
G1 = 5 0.924 0.842 0.815 0.937 0.817 0.792
G1 = 10 0.940 0.925 0.895 0.940 0.907 0.885
G1 = 20 0.943 0.955 0.931 0.934 0.948 0.924
G1 = 50 0.920 0.961 0.939 0.928 0.965 0.950

(3) (4)
G1 = 3 0.936 0.754 0.740 0.925 0.755 0.724
G1 = 5 0.932 0.846 0.818 0.924 0.844 0.812
G1 = 10 0.925 0.917 0.882 0.935 0.915 0.892
G1 = 20 0.936 0.959 0.937 0.943 0.956 0.941
G1 = 50 0.924 0.968 0.943 0.914 0.962 0.943

(5) (6)
G1 = 3 0.925 0.755 0.724 0.939 0.752 0.729
G1 = 5 0.924 0.844 0.812 0.923 0.844 0.820
G1 = 10 0.935 0.915 0.892 0.934 0.923 0.894
G1 = 20 0.943 0.956 0.941 0.934 0.952 0.935
G1 = 50 0.914 0.962 0.943 0.924 0.959 0.942

Table M.9: Coverage of the confidence interval of β̂TS based on the following measures of dispersion
of β̂TS: the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance
V̂ pl, and the (unobserved) asymptotic variance V Theo. Scenarios (1)-(6) are described in Section
5. J = 500, m = 3000, and ξ = 0.0001.
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V̂ sub V̂ pl V Theo V FS V̂ sub V̂ pl V Theo V FS

(1) (2)
G1 = 3 0.076 0.035 0.034 0.068 0.229 0.104 0.103 0.210
G1 = 5 0.097 0.059 0.057 0.091 0.294 0.174 0.172 0.269
G1 = 10 0.152 0.117 0.114 0.148 0.460 0.348 0.345 0.440
G1 = 20 0.259 0.234 0.228 0.263 0.789 0.696 0.689 0.811
G1 = 50 0.573 0.585 0.569 0.631 1.737 1.739 1.723 1.809

(3) (4)
G1 = 3 0.044 0.020 0.020 0.038 0.117 0.046 0.045 0.093
G1 = 5 0.056 0.034 0.033 0.052 0.145 0.077 0.075 0.123
G1 = 10 0.087 0.067 0.066 0.085 0.216 0.155 0.149 0.199
G1 = 20 0.149 0.134 0.131 0.151 0.354 0.309 0.298 0.346
G1 = 50 0.329 0.336 0.328 0.358 0.758 0.773 0.745 0.820

(5) (6)
G1 = 3 0.117 0.046 0.045 0.093 0.105 0.043 0.043 0.081
G1 = 5 0.145 0.077 0.075 0.123 0.131 0.072 0.071 0.110
G1 = 10 0.216 0.155 0.149 0.199 0.199 0.145 0.142 0.188
G1 = 20 0.354 0.309 0.298 0.346 0.333 0.289 0.285 0.326
G1 = 50 0.758 0.773 0.745 0.820 0.722 0.724 0.712 0.773

Table M.10: The average over simulations of the following measures of dispersion of 〈̂X,X〉
TS

(times 107): the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic
variance V̂ pl, the (unobserved) asymptotic variance V Theo, and an average over simulations of

n1/3
(
〈̂X,X〉

TS
−〈X,X〉

)2
denoted by V FS. Scenarios (1)-(6) are described in Section 5. J = 500,

m = 3000, and ξ = 0.0000.
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V̂ sub V̂ pl V Theo V FS V̂ sub V̂ pl V Theo V FS

(1) (2)
G1 = 3 0.176 0.061 0.054 0.166 0.850 0.279 0.262 0.813
G1 = 5 0.136 0.075 0.064 0.134 0.515 0.258 0.229 0.516
G1 = 10 0.167 0.137 0.116 0.164 0.540 0.416 0.359 0.524
G1 = 20 0.265 0.271 0.228 0.274 0.821 0.808 0.693 0.869
G1 = 50 0.575 0.676 0.569 0.633 1.746 2.011 1.724 1.835

(3) (4)
G1 = 3 0.109 0.037 0.034 0.100 0.211 0.070 0.061 0.197
G1 = 5 0.080 0.044 0.038 0.073 0.182 0.095 0.081 0.161
G1 = 10 0.097 0.079 0.067 0.095 0.231 0.179 0.151 0.221
G1 = 20 0.153 0.155 0.131 0.158 0.360 0.354 0.299 0.357
G1 = 50 0.330 0.388 0.328 0.361 0.759 0.885 0.745 0.825

(5) (6)
G1 = 3 0.211 0.070 0.061 0.197 0.217 0.072 0.065 0.197
G1 = 5 0.182 0.095 0.081 0.161 0.174 0.092 0.079 0.158
G1 = 10 0.231 0.179 0.151 0.221 0.216 0.169 0.144 0.206
G1 = 20 0.360 0.354 0.299 0.357 0.340 0.335 0.285 0.339
G1 = 50 0.759 0.885 0.745 0.825 0.724 0.835 0.712 0.777

Table M.11: The average over simulations of the following measures of dispersion of 〈̂X,X〉
TS

(times 107): the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic
variance V̂ pl, the (unobserved) asymptotic variance V Theo, and an average over simulations of

n1/3
(
〈̂X,X〉

TS
−〈X,X〉

)2
denoted by V FS. Scenarios (1)-(6) are described in Section 5. J = 500,

m = 3000, and ξ = 0.0001.
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tsub tpl tTheo tsub tpl tTheo

(1) (2)
G1 = 3 0.956 0.829 0.830 0.955 0.834 0.838
G1 = 5 0.950 0.880 0.886 0.955 0.877 0.879
G1 = 10 0.950 0.914 0.924 0.944 0.909 0.915
G1 = 20 0.941 0.933 0.939 0.941 0.933 0.934
G1 = 50 0.921 0.932 0.942 0.928 0.936 0.939

(3) (4)
G1 = 3 0.956 0.847 0.842 0.963 0.827 0.832
G1 = 5 0.955 0.875 0.878 0.958 0.875 0.871
G1 = 10 0.938 0.914 0.909 0.943 0.902 0.911
G1 = 20 0.942 0.940 0.937 0.928 0.923 0.926
G1 = 50 0.923 0.930 0.944 0.916 0.925 0.935

(5) (6)
G1 = 3 0.963 0.827 0.832 0.964 0.840 0.839
G1 = 5 0.958 0.875 0.871 0.955 0.887 0.882
G1 = 10 0.943 0.902 0.911 0.950 0.911 0.916
G1 = 20 0.928 0.923 0.926 0.940 0.930 0.933
G1 = 50 0.916 0.925 0.935 0.917 0.928 0.938

Table M.12: Coverage of the confidence interval of 〈̂X,X〉
TS

based on the following measures of dis-

persion of 〈̂X,X〉
TS

: the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic
variance V̂ pl, and the (unobserved) asymptotic variance V Theo. Scenarios (1)-(6) are described in
Section 5. J = 500, m = 3000, and ξ = 0.0000.
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tsub tpl tTheo tsub tpl tTheo

(1) (2)
G1 = 3 0.957 0.763 0.733 0.951 0.736 0.728
G1 = 5 0.944 0.847 0.807 0.952 0.840 0.824
G1 = 10 0.945 0.927 0.902 0.952 0.914 0.899
G1 = 20 0.946 0.945 0.938 0.940 0.933 0.923
G1 = 50 0.922 0.954 0.945 0.923 0.952 0.937

(3) (4)
G1 = 3 0.954 0.760 0.752 0.956 0.767 0.730
G1 = 5 0.950 0.871 0.846 0.948 0.859 0.838
G1 = 10 0.945 0.931 0.907 0.932 0.916 0.898
G1 = 20 0.938 0.951 0.930 0.929 0.942 0.924
G1 = 50 0.921 0.953 0.943 0.913 0.948 0.931

(5) (6)
G1 = 3 0.956 0.767 0.730 0.957 0.754 0.746
G1 = 5 0.948 0.859 0.838 0.946 0.845 0.822
G1 = 10 0.932 0.916 0.898 0.946 0.924 0.906
G1 = 20 0.929 0.942 0.924 0.942 0.948 0.934
G1 = 50 0.913 0.948 0.931 0.919 0.951 0.941

Table M.13: Coverage of the confidence interval of 〈̂X,X〉
TS

based on the following measures of dis-

persion of 〈̂X,X〉
TS

: the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic
variance V̂ pl, and the (unobserved) asymptotic variance V Theo. Scenarios (1)-(6) are described in
Section 5. J = 500, m = 3000, and ξ = 0.0001.
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R Monte Carlo Simulations with

a Two-Factor Stochastic Volatility Model

As a robustness check, we now document the finite sample properties of the subsampling

procedure in a two-factor stochastic volatility model.

Both the efficient log-price of the stock X(1) and the market X(2) follow the two-factor

stochastic volatility model of Bollerslev and Todorov (2011) without jumps. For i = 1, 2,

dX
(i)
t = σ

(i)
t dW

(i)
t(

σ
(i)
t

)2
= V

(i)
1,t + V

(i)
2,t

dV
(i)
1,t = 0.0128(0.4068− V (i)

1,t )dt+ 0.0954

√
V

(i)
1,t

(
ρdW

(i)
t +

√
1− ρ2dB(i)

1,t

)
dV

(i)
2,t = 0.6930(0.4068− V (i)

2,t )dt+ 0.7023

√
V

(i)
2,t

(
ρdW

(i)
t +

√
1− ρ2dB(i)

2,t

)
,

where ρ = −0.7. In addition, we set Corr(dW
(1)
t , dW

(2)
t ) = 0.5, so that the correlation

between the spot returns of X(1) and X(2) (and the spot beta) equals 0.5. We generate the

market microstructure noise as before, see Section 5 for details. We generate asynchronous

observations as in Section 5 with n1 and n2 from MSFT and SPY.

From Tables R.1 and R.2, we find that the values of subsampled variances and coverage

probabilities are relatively flat over wide ranges of m and J for all G1 considered, indicating

the method is not very sensitive to the choice of the smoothing parameters. These ranges

include the values J = 500 and m = 3000, which were chosen based on the simulations in

Section 5. For brevity, we have only included the designs with the market microstructure,

but the zero market microstructure noise results lend themselves to the same conclusion.

Further numerical results in Tables R.3-R.6 use J = 500 and m = 3000.

The results in Tables R.1-R.6 indicate that the subsampling method appears to be much

more robust than the plug-in method based on the expression for the asymptotic variance.

While the plug-in estimator V̂ pl estimates the theoretical asymptotic variance V Theo well,

the asymptotic variance itself is not very close to the finite sample variability V FS for smaller

values of G1. The subsampling method, on the other hand, delivers good estimates of the

finite sample variability for the whole range of G1 considered.

Hence, this simulation exercises suggests some degree of robustness of the conclusions of

Section 5 to model misspecification.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3, VFS = 1.646 (V pl = 0.568, V Theo = 0.509)

100 1.570 1.558 1.553 1.555 1.552 1.552 1.558 1.553 1.550
200 1.627 1.614 1.605 1.603 1.598 1.598 1.596 1.602 1.601
300 1.653 1.628 1.620 1.613 1.610 1.607 1.611 1.617 1.613
400 1.681 1.638 1.626 1.620 1.614 1.611 1.618 1.624 1.623
500 1.643 1.628 1.623 1.614 1.613 1.620 1.629 1.628
600 1.650 1.632 1.625 1.613 1.611 1.625 1.630 1.629
800 1.666 1.642 1.627 1.612 1.611 1.627 1.634 1.633
1000 1.652 1.627 1.613 1.614 1.630 1.640 1.638

G1 = 5, VFS = 1.128 (V pl = 0.580, V Theo = 0.488)

100 0.971 0.965 0.960 0.960 0.959 0.959 0.957 0.959 0.955
200 1.014 1.008 1.004 1.002 1.000 0.997 0.994 0.998 0.994
300 1.034 1.025 1.017 1.014 1.010 1.006 1.004 1.006 1.001
400 1.051 1.031 1.023 1.017 1.012 1.007 1.005 1.007 1.004
500 1.034 1.024 1.019 1.013 1.009 1.005 1.009 1.007
600 1.036 1.026 1.020 1.013 1.008 1.004 1.008 1.005
800 1.043 1.032 1.021 1.012 1.007 1.003 1.005 1.003
1000 1.036 1.021 1.011 1.004 1.001 1.001 1.001

G1 = 10, VFS = 1.204 (V pl = 0.984, V Theo = 0.802)

100 1.006 0.997 0.992 0.992 0.990 0.987 0.988 0.988 0.985
200 1.088 1.082 1.078 1.077 1.073 1.071 1.071 1.073 1.070
300 1.111 1.110 1.105 1.103 1.098 1.095 1.096 1.098 1.094
400 1.111 1.123 1.119 1.115 1.110 1.108 1.110 1.111 1.107
500 1.130 1.127 1.123 1.117 1.115 1.117 1.119 1.116
600 1.135 1.132 1.128 1.122 1.118 1.121 1.124 1.117
800 1.129 1.139 1.132 1.125 1.121 1.127 1.126 1.122
1000 1.142 1.136 1.126 1.125 1.129 1.129 1.125

G1 = 20, VFS = 1.812 (V pl = 1.929, V Theo = 1.560)

100 1.397 1.373 1.365 1.359 1.358 1.351 1.356 1.354 1.349
200 1.632 1.623 1.615 1.615 1.610 1.607 1.602 1.606 1.601
300 1.687 1.706 1.698 1.700 1.693 1.691 1.688 1.684 1.681
400 1.657 1.744 1.741 1.743 1.735 1.733 1.731 1.730 1.728
500 1.764 1.763 1.766 1.759 1.753 1.757 1.756 1.753
600 1.773 1.780 1.783 1.777 1.770 1.774 1.768 1.762
800 1.745 1.801 1.802 1.798 1.792 1.796 1.791 1.785
1000 1.808 1.812 1.807 1.808 1.809 1.799 1.795

G1 = 50, VFS = 3.838 (V pl = 4.835, V Theo = 3.886)

100 1.759 1.634 1.588 1.562 1.545 1.536 1.518 1.522 1.512
200 2.996 2.948 2.914 2.892 2.873 2.865 2.849 2.836 2.830
300 3.274 3.382 3.365 3.349 3.334 3.325 3.307 3.295 3.286
400 3.002 3.587 3.586 3.578 3.568 3.555 3.541 3.535 3.521
500 3.692 3.711 3.713 3.707 3.691 3.678 3.665 3.651
600 3.740 3.792 3.806 3.801 3.786 3.772 3.752 3.741
800 3.587 3.875 3.911 3.911 3.903 3.889 3.868 3.848
1000 3.887 3.966 3.974 3.972 3.955 3.931 3.908

Table R.1: Sensitivity and choice of subsampling parameters J and m for the estimation of the variance
of β̂TS (times 100). The numbers in the table represent average variance estimated by the subsampling
estimator over N = 1000 replications. Scenario (3). These numbers are to be compared with the actual

variability of β̂TS , V FS , which is the average over simulations of n1/3
(
β̂TS − β

)2
. Noise-to-signal ratio is

ξ = 0.0001. The two-factor stochastic volatility model.
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J \ m 500 1000 1500 2000 2500 3000 4000 5000 6000

G1 = 3 (coverage is 0.747 for V pl and 0.727 for V Theo)

100 0.939 0.939 0.935 0.934 0.934 0.932 0.934 0.935 0.933
200 0.945 0.942 0.936 0.940 0.937 0.939 0.937 0.937 0.934
300 0.941 0.942 0.937 0.940 0.935 0.937 0.942 0.943 0.940
400 0.945 0.944 0.938 0.942 0.939 0.938 0.940 0.938 0.936
500 0.942 0.936 0.944 0.939 0.935 0.938 0.935 0.940
600 0.942 0.940 0.942 0.935 0.937 0.933 0.937 0.938
800 0.942 0.942 0.942 0.933 0.934 0.932 0.935 0.932
1000 0.946 0.941 0.936 0.935 0.929 0.930 0.934

G1 = 5 (coverage is 0.839 for V pl and 0.811 for V Theo)

100 0.933 0.931 0.928 0.931 0.930 0.931 0.928 0.929 0.932
200 0.936 0.939 0.938 0.937 0.933 0.932 0.931 0.933 0.932
300 0.937 0.936 0.936 0.936 0.931 0.933 0.928 0.931 0.931
400 0.935 0.937 0.936 0.935 0.930 0.929 0.930 0.926 0.928
500 0.937 0.934 0.931 0.926 0.927 0.925 0.925 0.923
600 0.940 0.934 0.929 0.924 0.925 0.924 0.925 0.927
800 0.941 0.936 0.926 0.916 0.918 0.921 0.920 0.919
1000 0.937 0.924 0.919 0.917 0.917 0.912 0.918

G1 = 10 (coverage is 0.910 for V pl and 0.888 for V Theo)

100 0.922 0.917 0.917 0.918 0.916 0.915 0.917 0.916 0.913
200 0.931 0.928 0.925 0.923 0.923 0.922 0.922 0.919 0.921
300 0.932 0.933 0.924 0.927 0.922 0.924 0.920 0.924 0.923
400 0.930 0.932 0.921 0.926 0.922 0.921 0.921 0.922 0.924
500 0.931 0.924 0.925 0.922 0.925 0.925 0.922 0.923
600 0.930 0.925 0.926 0.924 0.924 0.924 0.924 0.921
800 0.932 0.929 0.927 0.922 0.922 0.922 0.922 0.920
1000 0.930 0.928 0.926 0.921 0.920 0.919 0.919

G1 = 20 (coverage is 0.949 for V pl and 0.924 for V Theo)

100 0.914 0.906 0.907 0.908 0.904 0.902 0.907 0.903 0.903
200 0.929 0.931 0.929 0.932 0.932 0.932 0.931 0.930 0.928
300 0.935 0.935 0.934 0.935 0.933 0.934 0.930 0.932 0.929
400 0.935 0.936 0.934 0.933 0.930 0.931 0.928 0.931 0.928
500 0.940 0.938 0.933 0.931 0.931 0.927 0.928 0.927
600 0.942 0.940 0.932 0.928 0.928 0.925 0.923 0.927
800 0.943 0.940 0.931 0.927 0.928 0.923 0.921 0.927
1000 0.941 0.930 0.926 0.928 0.923 0.920 0.921

G1 = 50 (coverage is 0.974 for V pl and 0.955 for V Theo)

100 0.818 0.796 0.786 0.784 0.778 0.784 0.779 0.778 0.779
200 0.914 0.902 0.906 0.903 0.904 0.909 0.904 0.904 0.905
300 0.927 0.932 0.929 0.929 0.927 0.927 0.923 0.930 0.932
400 0.919 0.937 0.938 0.934 0.936 0.933 0.936 0.941 0.942
500 0.940 0.942 0.943 0.939 0.938 0.941 0.943 0.942
600 0.939 0.943 0.944 0.939 0.940 0.940 0.942 0.942
800 0.937 0.947 0.944 0.937 0.941 0.937 0.938 0.940
1000 0.945 0.942 0.941 0.940 0.936 0.932 0.932

Table R.2: Sensitivity and choice of subsampling parameters J and m for the coverage of the confidence
interval for β̂TS . The numbers in the table represent empirical coverage rate of the subsampling estimator
over N = 1000 replications. Scenario (3). The nominal coverage rate is 0.95. Noise-to-signal ratio is
ξ = 0.0001. The two-factor stochastic volatility model.
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V̂ sub V̂ pl V Theo V FS V̂ sub V̂ pl V Theo V FS

ξ = 0.0000 ξ = 0.0001
G1 = 3 0.483 0.238 0.233 0.527 1.613 0.568 0.509 1.646
G1 = 5 0.617 0.396 0.389 0.669 1.009 0.580 0.488 1.128
G1 = 10 0.978 0.791 0.777 0.997 1.115 0.984 0.802 1.204
G1 = 20 1.699 1.586 1.554 1.715 1.753 1.929 1.560 1.812
G1 = 50 3.678 3.991 3.885 3.801 3.691 4.835 3.886 3.838

Table R.3: The average over simulations of the following measures of dispersion of β̂TS (times
102): the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl,

the (unobserved) asymptotic variance V Theo, and an average over simulations of n1/3
(
β̂TS − β

)2
denoted by V FS. The two-factor stochastic volatility model. J = 500 and m = 3000.

tsub tpl tTheo tsub tpl tTheo

ξ = 0.0000 ξ = 0.0001
G1 = 3 0.934 0.794 0.799 0.935 0.747 0.727
G1 = 5 0.938 0.854 0.857 0.927 0.839 0.811
G1 = 10 0.930 0.915 0.911 0.925 0.910 0.888
G1 = 20 0.933 0.934 0.935 0.931 0.949 0.924
G1 = 50 0.940 0.959 0.959 0.938 0.974 0.955

Table R.4: Coverage of the confidence interval of β̂TS based on the following measures of dispersion
of β̂TS: the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance
V̂ pl, and the (unobserved) asymptotic variance V Theo. The two-factor stochastic volatility model.
J = 500 and m = 3000.
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V̂ sub V̂ pl V Theo V FS V̂ sub V̂ pl V Theo V FS

ξ = 0.0000 ξ = 0.0001
G1 = 3 35.479 16.290 15.777 35.180 81.857 28.181 25.108 81.230
G1 = 5 45.343 27.150 26.295 46.200 63.201 34.793 29.654 63.040
G1 = 10 70.567 54.299 52.591 70.280 77.275 63.717 53.430 76.010
G1 = 20 121.959 108.599 105.181 116.700 124.780 125.967 105.391 118.800
G1 = 50 269.536 271.497 262.953 263.200 270.633 314.427 262.986 262.700

Table R.5: The average over simulations of the following measures of dispersion of 〈̂X,X〉
TS

(times
107): the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic variance V̂ pl,

the (unobserved) asymptotic variance V Theo, and an average over simulations of n1/3
(
〈̂X,X〉

TS
−

〈X,X〉
)2

denoted by V FS. The two-factor stochastic volatility model. J = 500 and m = 3000.

tsub tpl tTheo tsub tpl tTheo

ξ = 0.0000 ξ = 0.0001
G1 = 3 0.942 0.811 0.814 0.945 0.753 0.725
G1 = 5 0.941 0.862 0.860 0.938 0.849 0.826
G1 = 10 0.946 0.916 0.916 0.951 0.930 0.904
G1 = 20 0.943 0.940 0.938 0.942 0.956 0.931
G1 = 50 0.935 0.954 0.954 0.938 0.970 0.955

Table R.6: Coverage of the confidence interval of 〈̂X,X〉
TS

based on the following measures of dis-

persion of 〈̂X,X〉
TS

: the subsampling estimator V̂ sub, the plug-in estimated value of the asymptotic
variance V̂ pl, and the (unobserved) asymptotic variance V Theo. The two-factor stochastic volatility
model. J = 500 and m = 3000.
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