
Journal of Econometrics 161 (2011) 262–283
Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Subsampling high frequency data✩

Ilze Kalnina ∗

Département de sciences économiques, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, H3C 3J7, QC, Canada

a r t i c l e i n f o

Article history:
Received 14 February 2010
Received in revised form
21 December 2010
Accepted 23 December 2010
Available online 28 December 2010

JEL classification:
C12
C13
C14

Keywords:
Subsampling
Market microstructure noise
High frequency data
Realised volatility

a b s t r a c t

The main contribution of this paper is to propose a novel way of conducting inference for an important
general class of estimators that includes many estimators of integrated volatility. A subsampling scheme
is introduced that consistently estimates the asymptotic variance for an estimator, thereby facilitating
inference and the construction of valid confidence intervals. The new method does not rely on the exact
form of the asymptotic variance, which is useful when the latter is of complicated form. The method
is applied to the volatility estimator of Aït-Sahalia et al. (2011) in the presence of autocorrelated and
heteroscedastic market microstructure noise.
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1. Introduction

Volatility estimation is a key component in the evaluation of
financial risk. Financial econometrics continues to make progress
in developing more robust and efficient estimators of volatility.
But for some estimators, the asymptotic variance is hard to derive
or may take a complicated form and be difficult to estimate. To
tackle these problems, the current paper develops a method of
inference that is automatic in the sense that it does not rely on the
exact form of the asymptotic variance. In the traditional stationary
time series framework, this task canbe accomplishedby traditional
bootstrap and subsampling variance estimators. However, these
are inconsistent with high frequency data, which is potentially
contaminated with market microstructure noise, see Section 2.1.

A new subsampling method is developed, which enables
us to conduct inference for a general class of estimators that
includes many estimators of integrated volatility. The question
of inference on volatility estimates is important due to volatility
being unobservable. For example, one might want to test whether
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volatility is the same on two different days, or in two different
time periodswithin the same day. The latter corresponds to testing
for diurnal variation in the volatility. Also, a common way of
testing for jumps in prices is to compare two different volatility
estimates, which converge to the same quantity under the null
hypothesis of no jumps, but are different asymptotically under
the alternative hypothesis of jumps in prices. Then, a consistent
inferential method is needed to determine whether the two
volatility estimates are significantly different.

To illustrate the robustness of the new method, this paper
considers the example of the inference problem for the integrated
variance estimator of Aït-Sahalia et al. (2011), in the presence
of market microstructure noise. As several assumptions about
the market microstructure noise are relaxed, the expression
for the asymptotic variance becomes more complicated, and it
becomes more challenging to estimate each component of the
variance separately. On the other hand, the new subsampling
method delivers consistent confidence intervals that are simple to
calculate.

According to the fundamental theorem of asset pricing
(see Delbaen and Schachermayer, 1994), the price process should
follow a semimartingale. In this model, integrated variance
(sometimes called integrated volatility) is a natural measure of
variability of the price path (see, e.g. Andersen et al., 2001).
With moderate frequency data, say 5 or 15 min data, this can be
estimated by the so-called realized variance (RV), a sum of squared
returns (also referred to as realized volatility).1 The nonparametric

1 See Eq. (6) for the definition of realized variance.
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nature of realized variance and the simplicity of its calculation have
made it popular among practitioners. It has been used for asset
allocation (Fleming et al., 2003), forecasting of Value at Risk (Giot
and Laurent, 2004), evaluation of volatility forecasting models
(Andersen and Bollerslev, 1998), and other purposes. The Chicago
Board Options Exchange (CBOE) started trading S&P 500 Three-
Month realized volatility options on October 21, 2008. Over the
counter, these and other derivatives written on RV have been
traded for several years. These financial products allow one to bet
on the direction of the volatility, or to hedge against exposure
to volatility. One way of pricing these derivatives is by using the
theory of quadratic variation.

Suppose the log-price Xt follows a Brownian semimartingale
process,

dXt = µtdt + σtdWt , (1)

where µ, σ , and W are the drift, volatility, and Brownian Motion
processes, respectively. Our interest is in estimating volatility over
some interval, say one day, which we normalize to be [0, 1]. The
quantity of interest is captured by integrated variance, or quadratic
variation over the interval, which is defined as

IV =

∫ 1

0
σ 2
s ds.

Realized variance is a consistent estimator of integrated variance in
infill asymptotics, i.e., when the approximation ismade as the time
distance between adjacent observations shrinks to zero. According
to this approximation, therefore, the estimation error in RV should
be smaller for even higher frequency data than 5 min. Ironically,
this is not the case in practice. For the highest frequencies, the data
is more and more clearly affected by the bid–ask spread and other
market microstructure frictions, rendering the semimartingale
model inapplicable and RV inconsistent. Zhou (1996) proposed
to model high frequency data as a Brownian semimartingale
with an additive measurement error. This model can reconcile
the main stylized facts of prices both in moderate and high
frequencies. Zhang et al. (2005) were the first to propose a
consistent estimator of integrated variance in this model, in the
presence of i.i.d. microstructure noise, which they named the
Two Scales Realized Volatility (TSRV) estimator; it is also known
as the Two Time Scale estimator in the literature.2 Consistent
estimators in this framework were also proposed by Barndorff-
Nielsen et al. (2008), Christensen et al. (2010, 2009) and Jacod
et al. (2009). Aït-Sahalia et al. (2011) extend the TSRV estimator
to the case of stationary autocorrelated microstructure noise, but
do not propose an inference method. The problem with inference
arises from the complicated structure of the asymptotic variance
of the TSRV estimator. The method proposed in this paper can be
used to conduct inference for the Two Time Scales estimator in
the presence of not only autocorrelated, but also heteroscedastic
measurement error. This allows the model to accommodate the
stylized fact in the empirical market microstructure literature
about the U-shape in observed returns and spreads.3

This new subsampling scheme is useful in practice when
available estimators of the asymptotic variance are complicated
and hence present difficulties in constructing confidence intervals.
In such cases, a common procedure is to estimate the asymptotic
variance as a sample variance of the bootstrap estimator. It turns

2 A note on terminology: many authors have called TSRV the subsampling
estimator of IV . It is very different from, and should not be confused with, the
subsampling method of Politis et al. (1999).
3 See Andersen and Bollerslev (1997), Gerety andMulherin (1994), Harris (1986),

Kleidon and Werner (1996), Lockwood and Linn (1990) and McInish and Wood
(1992).
out that this procedure is inconsistent for noisy high frequency
data (see Section 2.1).

The subsampling method of Politis and Romano (1994) has
been shown to be useful in many situations as a way of
conducting inference under weak assumptions and without
utilizing knowledge of limiting distributions. The basic intuition for
constructing an estimator of the asymptotic variance is as follows.
Imagine the standard setting of discrete time with long-span
(also called increasing domain) asymptotics. Take some general
estimatorθn (think of i.i.d. Y ′

i s, a parameter of interest θ = E(Y ),
andθn =

1
n

∑
Yi). Suppose we know its asymptotic distribution

τn(θn − θ) H⇒ N (0, V )

as n → ∞, where H⇒ denotes convergence in distribution,
and τn is the rate of convergence when n observations are used.
Suppose we would like to estimate V , in order to be able to
construct confidence intervals for θn. This can be done with the
help of many subsamples, for which the estimator θn has the
same asymptotic distribution. In particular, suppose we construct
K different subsamples of m = m(n) consecutive observations,
starting at different values (whether they are overlapping or not is
irrelevant here), wherem = m(n) → ∞ as n → ∞ butm/n → 0.
Denote byθn,m,l the estimatorθn calculated using the lth block ofm
observations, with n being the total number of observations. Then,
the asymptotic distribution of τm(θn,m,l − θ) is the same, i.e.,

τm
θn,m,l − θ


H⇒ N (0, V ) (2)

for each subsample l, l = 1, . . . , K . Hence, V can be estimated by
the sample variance of τmθn,m,l (with centering aroundθn, a proxy
for the true value θ ). This yields the following estimator of V

V = τ 2m ×
1
K

K−
l=1

θn,m,l −θn2 , (3)

and we haveV p
−→ V ,

where
p

−→ denotes convergence in probability. Notice that the
estimator in (3) is like an average of squared τm

θn,m,l − θ

over

all subsamples, except thatθn plays the role of θ . The difference
betweenθn and θ is negligible becauseθn converges faster to θ thanθn,m,l does.

It is shown that a direct application of the above method to the
high frequency framework fails. This fact is illustrated for the RV
example inmodel (1). That is,θn is taken to be realized variance and
θ its probability limit, integrated variance. The intuition behind the
failure is straightforward. The problem is thatθn,m,l andθn do not
converge to the same quantity and so (2) cannot be satisfied. The
underlying reason is that the spot (or infinitesimal) volatility σt
is changing over time. The estimator calculated on a small block
cannot estimate the integrated variance θ , because θ contains
information about spot volatility on the whole interval.

Politis et al. (1997) show, in the long span asymptotic frame-
work, that the traditional subsampling scheme is valid under
weaker assumptions than stationarity. Instead of stationarity, they
assume that the normalizedθn,m,l is on average close to the lim-
iting distribution of θn. This allows for, e.g., considerable local
heteroscedasticity. However, in an infill asymptotic framework,
changes of volatility and its moments over time are not local in
nature. Lahiri (1996) illustrates the problems infill asymptotics
creates by proving inconsistency of some commonly-used estima-
tors under this asymptotic scheme.

A novel subsampling scheme is proposed that can estimate
the asymptotic variance of RV. Importantly, it can also be applied
to the Two Time Scales estimator of Aït-Sahalia et al. (2011), in
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the presence of autocorrelated measurement error with diurnal
heteroscedasticity. There are no alternative inferential methods
available in the literature for this case. Moreover, this subsampling
scheme can, under some conditions, estimate the asymptotic
variance of a general class of estimators, which includes many
estimators of the integrated variance.

The remainder of this paper is organized as follows. Section 2
describes the usual subsampling method of Politis and Romano
(1994) and proposes a new subsamplingmethod. It also introduces
an alternative scheme that is robust to jumps in volatility. Section 3
shows how inference can be conducted for the Two Time Scales
estimator in the presence of autocorrelated and heteroscedastic
microstructure noise. Section 4 applies the subsampling method
to a general class of estimators. Section 5 investigates the
numerical properties of the proposedmethod in a set of simulation
experiments. Section 6 applies themethod to high frequency stock
returns. Section 7 concludes.

2. Description of resampling schemes

The aim of this section is to motivate and introduce a new
subsampling scheme in a relatively simple framework. Since the
proposed method does not change across models or estimators,
the motivation and intuition is given for the example of realized
volatility in the absence of any market microstructure noise.

We first describe the setting for the realized volatility
example. Suppose that log-price Xt is the following Brownian
semimartingale process

dXt = µtdt + σtdWt , (4)

whereWt is standardBrownianmotion, the stochastic processµt is
locally bounded, and σt is a càdlàg spot volatility process.4 Suppose
that we have observations on X on the interval [0, T ], where T is
fixed. Without loss of generality set T = 1. Assume observation
times are equidistant, so that the distance between observations is
1/n. The asymptotic scheme is infill as n → ∞.

Suppose the quantity of interest is integrated variance (also
called integrated volatility),

IV =

∫ 1

0
σ 2
s ds. (5)

IV is a random variable depending on the realization of the
volatility path {σt , t ∈ [0, 1]}. The usual estimator of IV is the
realized variance (often called realized volatility)

RVn =

n−
i=1


Xi/n − X(i−1)/n

2
. (6)

This satisfies
√
n (RVn − IV ) H⇒ MN(0, V ) (7)

V = 2IQ = 2
∫ 1

0
σ 4
s ds

where MN(0, V ) denotes a mixed normal distribution with
random conditional variance V independent of the underlying
normal distribution.5The convergence (7) follows from Barndorff-
Nielsen and Shephard (2002) and Jacod (2008), and is stable
in law, see Aldous and Eagleson (1978). Stable convergence is
slightly stronger than the usual convergence in distribution. Stable
asymptotics are particularly convenient because it permits division

4 In other words, the sample paths of the volatility process are left continuous
with right limits.
5 In other words, the limiting p.d.f. is of the form f (x) =


φ0,v(x)fV (v)dv, where

fV denotes the p.d.f. of V and φ0,v(x) = exp(−x2/2v2)/
√
2πv.
of both sides of (7) by the square root of any consistent estimator of
V to obtain a standardized asymptotic distribution for conducting
inference on RVn.

In fact, for the realized variance example, inference can
be conducted relatively easily. Barndorff-Nielsen and Shephard
(2002) propose to estimate V as twice the realized quarticity,V =

2IQn, where realized quarticity is the sum of fourth powers of
returns, properly scaled,

IQn =
n
3

n−
i=1


Xi/n − X(i−1)/n

4
. (8)

The estimator V is consistent for V in the sense that V/V p
−→ 1.

This result allows the construction of consistent confidence
intervals for IV . For example, a two-sided level 1 − α interval is
given by Cα = RVn ± zα/2V 1/2/

√
n, where zα is the α quantile

from a standard normal distribution, and this has the property that
Pr[IV ∈ Cα] → 1−α.Mykland andZhang (2009) have proposed an
alternative estimator of V that is more efficient thanV under the
sampling scheme (4) and can also be used to construct intervals
based on the studentized limit theory.

2.1. Failure of the traditional resampling schemes

Recently, Gonçalves and Meddahi (2009) have proposed a
bootstrap algorithm for RV, in the setting of no noise. They use
the i.i.d. and wild bootstrap applied to studentized RV. They show
that resampling the studentized RV gives confidence intervals for
RV with better properties than the 2IQn estimator of asymptotic
variance. Their procedure relies on an estimator of the asymptotic
variance, which is not always available. A more widely used
bootstrap procedure would be to estimate asymptotic variance
as the sample variance of the bootstrap statistic. This procedure
is simple, but only consistent for the wild bootstrap with certain
external random variables. Podolskij and Ziggel (2007) show that,
to first order, all methods proposed by Gonçalves and Meddahi
(2009) apply in exactly the same way to the Bipower Variation
estimator.

All the above bootstrap methods become inconsistent in the
presence of any market microstructure noise. While the current
section also keeps this simplifying assumption for expositional
purpose, Section 3 shows robustness of the proposed subsampling
estimator to the market microstructure noise, which enables its
application to data at the highest frequencies.

We now consider the popular method of Politis and Romano
(1994). This subsampling scheme fails in our setting due to
variability of the volatility over time. It is however instructive
to consider, as subsequently proposed methods use a similar
underlying idea.

Letθn be the RV calculated on the full sample, and letθn,m,l be
the RV calculated on the lth block ofm observations,6

θn,m,l =

ml−
i=m(l−1)


Xi/n − X(i−1)/n

2
,

see Fig. 1. In the above, 0 < l ≤ K , where K is the number of
subsamples, K = ⌊n/m⌋.

Assumption 5.3.1 of Politis et al. (1999) is satisfied, i.e., the
sampling distribution of τn(θn − θ) converges weakly. Therefore,

6 For simplicity, all subsampling schemes in this paper are presented with non-
overlapping subsamples. However, it is inconvenient to display non-overlapping
subsamples in figures, so Figs. 1–3 show maximum overlap versions of the
subsampling schemes.
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Fig. 1. The subsampling scheme of Politis and Romano (1994).
in the setting of stationary and mixing processes, V should be
approximated well by

VPR = m ×
1
K

K−
l=1

θn,m,l −θn2 .
However, in our setting, it is easy to see thatVPR does not converge
to V .

Proposition 1. Let X satisfy (4) and θn be the realized variance
defined in (6). Let m → ∞ and m/n → 0 as n → ∞. Then,VPR − mθ2 = op(m).

The estimator on the full sample converges to the true value,θn →
p θ . On the other hand, the estimator on a subsample

converges to zero. This is because each high frequency return is
of order n−1/2, so a sum ofm squared returns is of orderm/n → 0.
Therefore, Proposition 1 obtains that VPR is asymptotically equal
to mθ2. Notice that the value θ2 is not related to V , which is the
parameter of interest.

Different orders of magnitude of θn,m,l and θn could be
accounted for by using m

n
θn,m,l instead ofθn,m,l as in

V ′

PR = m ×
1
K

K−
l=1

 n
m
θn,m,l −θn2 .

However, it still holds that n
m
θn,m,l − θn p9 0 so long as the spot

volatility changes over time. This is because m
n
θn,m,l estimates

the spot variance σ 2 (·) at some point, instead of the integrated
variance θ .7Assuming no drift, no leverage, and sufficiently smooth
volatility sample paths, one can show that the resulting estimator
has a diverging bias, conditional on the volatility sample path,

EV ′

PR − V = m

IQ − IV 2

+ o(1). (9)
Therefore, the underlying reason for the failure of the subsampling
method of Politis and Romano is the fact that the spot volatility
changes over time. The latter effect is captured by the term IQ−IV 2

in Eq. (9) above, which is zero if and only if volatility is constant
over the whole interval [0, 1].

An intuitive alternative would be to sample prices at some
lower frequency instead of taking a sub-block of consecutive high
frequency observations. In a way, sub-blocks are mimicking the
long span asymptotic scheme, and the infill asymptotic scheme
equivalent would be subsamples formed by lower frequency
prices. Thus, for example, θn,m,1 would be RV calculated with
5 min returns starting with the first second, θn,m,2 would be RV
calculated with 5 min returns starting with the second, and so on.

7 For estimation of the spot variance using realized variance on a shrinking
interval, see Foster and Nelson (1996), Andreou and Ghysels (2002), Mikosch and
Starica (2003) and Kristensen (2010).
It then holds thatθn,m,l−θn p
→ 0,∀l. This, however, is not sufficient

for consistency of V . The problem is that for every n, any two
subsample estimators would be highly correlated. The resultingV
would be asymptotically unbiased, but inconsistent.

2.2. The new subsampling scheme

We now introduce and explain the new subsampling scheme.
The current subsection describes this scheme for the RV example,
and Section 3 applies it to the Two Time Scales estimator. Section 4
applies this subsampling scheme to a more general class of
estimators.

In the subsampling scheme of Politis and Romano (1994), the
problemwas that the estimator on a subsampleθn,m,l was centered
at ‘‘the wrong quantity’’. In the formula

VPR = m ×
1
K

K−
l=1

θn,m,l −θn2 ,
the quantity θn plays the role of θ , but the problem is that the
leading term in θn,m,l is integrated variance over a shrinking
interval,

θl =

∫ lm/n

(l−1)m/n
σ 2
u du. (10)

Thus,θn,m,l either converges to zero or the spot volatility depending
onwhether it is scaled by n/m, but in any case it cannot estimate θ ,
the integrated volatility over the whole interval [0, 1]. Therefore,θn,m,l −θn does not converge to zero, causingVPR to explode.

Consider an alternative approach. We aim to center estimators
at θl (as defined by Eq. (10)), in order to extract the information
about the variance of θn,m,l. The leading term of the variance ofθn,m,l is
Vl = 2

∫ lm/n

(l−1)m/n
σ 4
u du.

It is of course not equal to V , which we want to estimate, but we
can use the fact that these add up to V over subsamples,

V = 2
∫ 1

0
σ 4
u du =

K−
l=1

Vl.

Given the additive structure of V , this approach can still give a
consistent estimator of V , despite volatility changing over time.
The only question left is, how to obtain an estimator of the
centering factor θl. So consider using two subsamples, one with
length J and one with lengthm, such that J is of smaller order than
m. Then, both n

m
θn,m,l and n

J
θn,J,l estimate the spot variance, but

they have different convergence rates. This in turn means one can
be used to center the other. To simplify the presentation, we use
the notationθ longl andθ shortl instead ofθn,m,l andθn,J,l.
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Fig. 2. The new subsampling scheme.
Since the rate of convergence of n
J
θ short is √

J , the estimator of
V becomes

Vsub = J ×
1
K

K−
l=1


n
J
θ shortl −

n
m
θ longl

2

(11)

where K = ⌊n/m⌋.θ shortl andθ longl are realized variances calcu-
lated on the short subsample with J observations, and the long
subsamplewithm observations. Fig. 2 provides a graphical illustra-
tion. The corresponding time intervals used are


(l−1)m

n ,
(l−1)m+J

n


and


(l−1)m

n , lm
n


, so the expressions for estimators on subsamples

become

θ shortl =

J−
i=1


X (l−1)m+i

n
− X (l−1)m+i−1

n

2
θ longl =

m−
i=1


X (l−1)m+i

n
− X (l−1)m+i−1

n

2
.

For an arbitrary volatility process, nJ−1θ shortl and nm−1θ longl cannot
be guaranteed to be close. For example, if the volatility process has
a large jump on the interval covered byθ longl , but not covered byθ shortl , then nJ−1θ shortl and nm−1θ longl can differ substantially. There-
fore, some kind of smoothness condition on the volatility paths
is needed. Importantly, we do not require differentiable sample
paths. It can be shown that a sufficient condition is to assume that
volatility itself evolves like a Brownian semimartingale. This is a
common way of modeling volatility in practice.

Assumption A1. The volatility process {σt , t ∈ [0, 1]} is a Brown-
ian semimartingale of the form

dσt = µ̃tdt + σ̃tdWt

where Wt is standard Brownian motion, the stochastic processµt
is locally bounded and the stochastic processσt is càdlàg.
Proposition 2. Suppose (A1) holds and X satisfies (4). Let θn be the
realized variance defined in (6), m → ∞, J → ∞, m/n → 0,
J/m → 0, and mJ2/n → 0 as n → ∞. Then,Vsub

p
−→ V .
The cost of not relying on the exact expression of V is that the
proposed method is data intensive. J should be large enough forθJ
to have reasonable finite sample properties. As can be seen from
the conditions above, m should be even larger, and n, the total
number of observations, should be much larger than J .

Sections 3 and 4 show that Proposition 2 can be extended
to more general settings than RV in a Brownian semimartingale
model. This is because the subsampling method does not rely on
the exact form of V , which it estimates.

2.3. An alternative subsampling scheme

The new estimator introduced in the previous section,Vsub, has
the disadvantage that it does not allow for jumps in the volatility.
The current section presents an alternative subsampling scheme
that allows for such jumps.8

This subsampling scheme is illustrated in Fig. 3. On every block
ofm observations, calculate the estimatorθn twice as follows. First,
calculate it using all m observations, and denote it asθ fastl . Then,
calculate the estimatorθn using every Q th price observation in the
block of m observations, and denote it asθ slowl .9

Now,θ fastl can be used to center theθ slowl , because they both
converge to (10), and becauseθ fastl converges to (10) faster thanθ slowl does. The new estimator of V becomes

V ′

sub =
m
Q

×
1
K

K−
l=1

 n
m
θ slowl −

n
m
θ fastl

2
=

n
Q

n/m−
l=1

θ slowl −θ fastl

2
8 We conjecture that this alternative subsampling scheme is also robust to jumps

in the price process in those special cases when these jumps do not appear in
the expression of V . One example of such a case is the multipower variation
when the sum of all powers is smaller than one, see Barndorff-Nielsen et al.
(2005).
9 The subsampling scheme is similar in structure to the one in Lahiri et al. (1999).

They similarly use two grids for subsampling to predict stochastic cumulative
distribution functions in a spatial framework. However, they assume that the
underlying process is stationary and their asymptotic framework is mixed infill and
increasing domain.
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Fig. 3. An alternative subsampling scheme.
where

θ fastk =

m−
i=1


X i+m(k−1)

n
− X i−1+m(k−1)

n

2
θ slowk =

⌊m/Q ⌋−
i=1


X iQ+m(k−1)

n
− X (i−1)Q+m(k−1)

n

2
.

The consistency result does not need Assumption A1 anymore.

Proposition 3. Suppose X satisfies (4). Let m → ∞, Q → ∞,
m/n → 0, and Q/m → 0 as n → ∞. Then,

V ′

sub
p

−→ V . (12)

The new estimator V ′

sub uses sparse data and hence cannot
capture autocorrelatedmarketmicrostructure noise. Since the Two
Scales estimator with autocorrelated noise is the focus of this
paper,V ′

sub is not used beyond the current section.

3. Inference for the two scales realized volatility estimator

This section shows how the new subsampling scheme can be
applied to the Two Time Scales estimator of integrated variance
proposed by Aït-Sahalia et al. (2011). Although only this example is
discussed in detail, this subsampling scheme could also be applied
to other integrated variance estimators in the presence of market
microstructure noise, such asMultiscale estimator of Zhang (2006),
Realized Kernels of Barndorff-Nielsen et al. (2008), and the pre-
averaging estimator of Jacod et al. (2009).

Stock price data at highest frequencies is well known to be
affected by market microstructure noise. For example, trades are
not executed in practice at the efficient price. Typically, they
are executed either at the prevailing bid or ask price. Therefore,
observed transaction prices alternate between bid and ask prices
(the so-called bid–ask bounce), creating negative autocorrelation
in observed returns, which is a stylized fact in high frequency data.
This was the motivation for Zhou (1996) to introduce an additive
market microstructure noise model where the observed log-price
Y is a sum of a Brownian semimartingale component X and an i.i.d.
noise ϵ,

Yt = Xt + ϵt . (13)

In this model, observed log-returns display negative first order
autocovariance,
Cov

1Yi/n,1Y(i−1)/n


= Cov


1Xi/n + ϵi/n − ϵ(i−1)/n,1X(i−1)/n + ϵ(i−1)/n − ϵ(i−2)/n


= −Var


ϵ(i−1)/n


. (14)

Another stylized fact is that realized variances calculated at
the highest frequencies become very large. This is in contradiction
to the Brownian semimartingale model, where RV has roughly
the same expectation irrespective of the frequency at which it is
calculated. Also, RV should converge to IV when higher and higher
frequencies are used. This difficulty lies behind the underlying
reason for the common practice not to calculate realized variance
at higher frequencies than 5 or 15 min. The problem with this
approach is that it implies discarding most of the available data.
There are only 72 five minute returns in a day, and only 24
fifteen minute returns in a day, while the available high frequency
data is usually measured in thousands. In order to be able to use
all the available data, one has to work with a model that can
accommodate the above stylized facts.

Zhang et al. (2005) were the first to introduce a consistent
estimator of integrated variance of the efficient price IV within
the additivemeasurement error model of Zhou (1996), see Eq. (13)
above. The noise ϵt is i.i.d., zero mean with variance Var (ϵ) = ω2

and Eϵ4 < ∞, and independent from the latent log-price Xt . In
this model, Zhang et al. (2005) propose the following consistent
estimator for the integrated variance of Xt ,

θn = [Y , Y ](G1) −
nG1

n
[Y , Y ](1) , (15)

where, for any parameter b,

[Y , Y ](b) =
1
b

n−b−
i=1


Y(i+b)/n − Yi/n

2
nb =

n − b + 1
b

.

Notice that [Y , Y ](1) coincides with the RV estimator, while
[Y , Y ](G1) consists of lower frequency returns. In particular,
[Y , Y ](G1) consists of returns calculated fromprices that areG1 high
frequency observations apart. Thus, time distance is n−1 between
high frequency observations and G1n−1 between lower frequency
observations. In empirical applications, a common choice for G1
is such that the lower frequency returns are sampled at 5 min.
Zhang et al. (2005) call the above estimator the Two Scales Realized
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Fig. 4. Properties of returns of Microsoft (MSFT) stock. Returns are constructed from transaction prices over the whole year 2006. See Section 6 for data cleaning procedures.
Panel (a) shows the estimated heteroscedasticity function ω (·), averaged over all days in 2006. Panel (b) shows the autocorrelogram of returns calculated in tick time.
Volatility (TSRV) estimator. They derive the following asymptotic
distribution of the estimator,

n1/6 θn − θ


⇒
√
VZ

where the asymptotic (conditional) variance takes the form

V = c
4
3

∫ 1

0
σ 4
u du  

signal

+ 8c−2ω4  
noise

, (16)

i.e., it consists of a signal part, which is due to the efficient price,
and a noise part. In the above, Z is a standard normal random vari-
able, independent from V , and c is the constant in G1 =


cn2/3


.

With i.i.d. noise, V can be estimated component by component.
Var (ϵ) = ω2 can be estimated using the following estimator pro-
posed by Bandi and Russell (2008),

ω2 =
RV
2n

p
→ω2.

Wesaw in Section 2 that in amodelwithout noise, integrated quar-
ticity


σ 4
u du can be estimated by realized quarticity defined in

(8). This becomes more difficult in the presence of noise. How-
ever, Barndorff-Nielsen et al. (2008) have proposed an estimator
for


σ 4
u du, which is consistent in the presence of i.i.d. noise, see

Section 5.
This model is for i.i.d. noise, so the noise is assumed to be

homoscedastic. A well known stylized fact in the empirical market
microstructure literature is that intradaily spreads (difference
between bid and ask price) and intradaily stock price volatility
are described typically by a U-shape (see footnote 3 for some
references). In other words, prices are more volatile in mornings
and afternoons than at noon; spreads are also larger in mornings
and afternoons. Fig. 4(a) presents an estimate of heteroscedasticity
function ω2 (·) for transaction prices of Microsoft stock, averaged
over all days in the year 2006. The diurnal variation is evident.

Kalnina and Linton (2008) introduce diurnal heteroscedasticity
in the microstructure noise in model (13). Suppose the efficient
log-price X is the same as above in (13), but the noise displays
unconditional heteroscedasticity. In particular, suppose the noise
ϵt satisfies

ϵt = ω(t)ut (17)
whereω(t) is a nonstochastic differentiable function of time t , and
ut is i.i.d. with E (ut) = 0, and Var (ut) = 1. As a result of this
generalization, the asymptotic variance ofθn changes to

V = c
4
3

∫ 1

0
σ 4
u du  

signal

+ 8c−2
∫ 1

0
ω4(u)du  

noise

.

In this model, the previous estimator of the noise part of V ceases
to be consistent asω2 =

RV
2n

p
→

∫ 1

0
ω2(u)du,

so, by Jensen’s inequality, its square would be always strictly
smaller than the target


ω4(u)du as long as there is any diurnal

variation at all. Kalnina and Linton (2008) show that ω (·) can be
estimated at any fixed point τ using kernel smoothing,

ω2 (τ ) =
1
2

n−
i=1

Kh (ti−1 − τ)

1Yti−1

2
.

In the above, h is a bandwidth that tends to zero asymptotically and
Kh(.) = K(./h)/h, where K(.) is a kernel function satisfying some
regularity conditions. This suggests estimating the noise part of V
by

8c−2
∫ 1

0
ω4(u)du.

As we saw earlier in (14), the i.i.d. measurement error
model is consistent with negative first order autocorrelations in
the observed returns. However, returns can sometimes exhibit
autocorrelation beyond the first lag in practice. For example,
Fig. 4(b) graphs the autocorrelogram of the returns of Microsoft
stock for the whole year 2006. We see that Microsoft stock
returns display strong negative autocorrelation well beyond the
first lag. While the model (13) does generate a negative first
autocorrelation, it implies that any further autocorrelations have
to be zero. Since increments of a Brownian semimartingale are
uncorrelated in time, any such autocorrelation has to be due to
noise ϵt .10

10 In a Brownian semimartingale model, the only source of autocorrelations of
increments is drift, which is negligible for high frequencies.
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Aït-Sahalia et al. (2011) generalize the i.i.d. measurement error
model (13) in a different direction. They allow for
autocorrelated stationary microstructure noise. In particular, they
make the following assumption about the noise.

Assumption A2. The noise ϵti is independent from the efficient
log-price process Xt , and it is (when viewed as a process in index i)
stationary and strongmixingwith themixing coefficients decaying
exponentially. Also, for some κ > 0, Eϵ4+κ < ∞.

In model (13) with ϵt satisfying Assumption A2, Aït-Sahalia
et al. (2011) propose the following consistent estimator for the
integrated variance of Xt ,

θn = [Y , Y ](G1) −
nG1

nG2
[Y , Y ](G2) (18)

where G1 and G2 satisfy the following assumption,

Assumption A3. The G1 parameter of the Two Time Scales esti-
mator θn defined by (18) satisfies G1 =


cn2/3


for some con-

stant c . The G2 parameter is such that Cov(ϵ0, ϵG2/n) = o(n−1/2),

G2 → ∞, G2/G1 → 0.11

The Two Time Scales estimator defined by (18) is more general
than the one in (15), which is a special case when G2 = 1 and
G1 → ∞ as n → ∞. Aït-Sahalia et al. (2011) show that the new
Two Time Scales estimatorθn has the same asymptotic properties
except it has a more complicated asymptotic variance,

V = c
4
3

∫ 1

0
σ 4
u du  

signal

+ 8c−2Var (ϵ)2 + 16c−2 lim
n→∞

n−
i=1

Cov

ϵ0, ϵi/n

2
  

noise

, (19)

where c is the constant in G1 =

cn2/3


.

The literature does not provide any estimator of V or an
alternative method for constructing confidence intervals for θn.
Here we can estimate the asymptotic variance of the Two Time
Scales estimatorθn using the subsampling scheme.

Theorem 4. Supposemodel (13) holds, and ϵti satisfy AssumptionA2.
Let θn be the Two Time Scales estimator defined by (18), with
parameters G1 and G2 that satisfy Assumption A3. Let V be defined
by (19). Let J → ∞,m → ∞, J/m → 0,m/n → 0, G1/J → 0, and
Jmn−5/3

→ 0. Then,Vsub
p

→ V

where

Vsub = Jn−2/3
×

1
K

K−
l=1


n
J
θ shortl −

n
m
θ longl

2

(20)

with K = ⌊n/m⌋.

In the above,θ shortl is simplyθn calculated on a smaller block of
J observations inside the lth larger block of m observations, with
exactly the same parameters G1 and G2 asθn uses. See Fig. 2 for an
illustration. In particular,

θ shortl = [Y , Y ](G1)l −
JG1
JG2

[Y , Y ](G2)l

11 The restriction on Cov(ϵ0, ϵG2/n) should be considered in the light of the fact
that Assumption A2 implies that there exists a constant φ such that, for all i,Cov ϵi/n, ϵ(i+l)/n

 ≤ φ lVar (ϵ) .
where

[Y , Y ](Gi)l =
1
Gi

J−Gi−
i=1


Y(l−1)m/n+(i+Gi)/n − Y(l−1)m/n+i/n

2
,

i = 1, 2

JGi =
J − Gi + 1

Gi
, i = 1, 2.

One obtains θ shortl by substituting J for m above. In Fig. 2, the
versionwithmaximum overlap is presented. In practice, it is much
quicker to compute the no overlap version, for which Theorem 4 is
formulated. While this does not alter the conclusion of Theorem 4,
themaximumoverlap version is slightlymore efficient. In this case,Vsub is defined by (20) with K = n − m + 1.

To the author’s knowledge, this is the only available method
in the literature to construct confidence intervals for the Two
Time Scales estimator when the noise is autocorrelated. Similarly,
one can apply this method to the Multiscale estimator of Aït-
Sahalia et al. (2011) when microstructure noise is autocorrelated.
The advantage of using the Multiscale estimator is that it has the
optimal rate of convergence n1/4.

However, the above model of Aït-Sahalia et al. (2011) rules
out any diurnal heteroscedasticity of the noise. When both
autocorrelation and heteroscedasticity are taken into account, we
have

Lemma 5. Suppose the observed price satisfies Yi/n = Xi/n + ϵi/n
where the efficient log-price Xt follows a Brownian semimartingale
process (4) and microstructure noise ϵi/n satisfies

ϵt = ω(t)ut

where ω (·) is a differentiable, nonstochastic function of time, ut
satisfies Assumption A2 and Var (ut) = 1. Then,θn defined in (18) is
such that

n1/6 θn − θ


⇒
√
VZ

where

V = c
4
3

∫ 1

0
σ 4
u du + 8c−2

∫ 1

0
ω4(u)du

+ 16c−2
∫ 1

0
ω4(u)du lim

n→∞

n−
i=1

Cov

ϵ0, ϵi/n

2
.

In this case of autocorrelated and heteroscedastic noise,
Theorem 4 easily generalizes and subsampling again delivers a
consistent estimate of V . This is because both are special cases of
the consistency result of the subsampling estimator in the general
case, which is described in the next section. To estimate this more
complicated V , exactly the same formula Vsub should be used as
for the homoscedastic case. In this model, this is the only available
method in the literature to construct confidence intervals for the
Two Time Scales estimator.

Importantly, this section illustrates the robustness of the
subsampling estimator of V across different sets of assumptions.
Moreover, it is also easy to implement. All that is necessary is to
computeθn on several sub-blocks of observations. We conjecture
that the subsampling estimator Vsub would be consistent for V
under even more general assumptions than considered above,
for example, in the case when autocorrelations of the noise are
changing through time, or when the efficient returns have fat tails
as in Meddahi and Mykland (2010).

4. Inference for a general estimator

This section shows how to use the new subsampling scheme (as
described in Sections 2.2 and 3) to conduct inference for a general
class of estimators of volatility measures. A set of assumptions
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is introduced and explained, under which subsampling delivers
a consistent estimate of the asymptotic variance of an estimatorθn. As we shall see, there are two essential ingredients for the
subsampling method to work. One is additivity over subsamples
of the asymptotic variance ofθn. The second is that the asymptotic
distribution ofθn calculated on a block of observations is similar,
in a sense explained below, to the asymptotic distribution of θn
calculated using all available data.

We do not assume a specific process for X . It could be a pure
diffusion or a diffusion contaminated with noise, as long as the
regularity assumptions below are satisfied. All arguments in this
section aremade conditional on the volatility path {σu, u ∈ [0, 1]}.
Suppose there is an estimator θn, for which the asymptotic
distribution is known to be as follows

τn
θn − θ


⇒

√
VZ . (21)

In the above, τn is a known rate of convergence ofθn. For example,
τn = n1/2 for realized variance, τn = n1/6 for the Two Time
Scales estimator. Z is a random variable that is known to satisfy
E(Z) = 0 and Var(Z) = 1. A consistent estimator of V thus enables
a researcher to construct consistent confidence intervals forθn.

We recall the subsampling scheme introduced in Section 2.2.
Divide the total number of returns into blocks of m consecutive
returns. Thus, we obtain ⌊n/m⌋ subsamples. Denote byθ longl the
estimator θn calculated using all m returns of the lth block, l =

1, . . . , ⌊n/m⌋. Denote byθ shortl the estimatorθn calculated using
only J returns of the lth block, where J < m. See Fig. 2 in Section 2.2
for a graphical illustration.

In order to guarantee that n
J
θ shortl and n

m
θ longl converge to the

same quantity, despite being defined on different time intervals,
we need to impose some smoothness on the volatility paths. In
particular, we use the following assumption.

Assumption A4. (21) holds, where θ and V are the following
functions of the volatility path {σu, u ∈ [0, 1]},

θ =

∫ 1

0
g1 (σ (u)) du

V =

∫ 1

0
g2 (σ (u)) du

where g1, g2 ∈ C1 [0, 1] and σ is a Brownian semimartingale as
in (4).

For example, we obtain integrated variance IV with g1(u) =

σ 2(u) and the asymptotic variance of realized variance with
g2 (σ (u)) = 2σ 2(u).

The type of estimators that are likely to satisfy the assumptions
of this section are those that are approximately additive over
subsamples, i.e.,

θn =

⌊n/m⌋−
l=1

m
J
θ shortl + op(1) (22)

or

θn =

⌊n/m⌋−
l=1

θ longl + op(1). (23)

All currently available estimators of integrated variance and
related quantities satisfy this additivity property. We also impose
the following assumption, which ensures that estimators on
subsamples are mixing.

Assumption A5. For any fixed n, the returns process

R(n)i/n


i=1,...,n

with R(n)i/n = Xi/n−X(i−1)/n is strongmixing. Also,θn = φ

R(n)1/n, R

(n)
2/n,

. . . , R(n)1


where φ : Rn

−→ R.
This is a rather strong assumption. For example, when X follows
a semimartingale (4), this assumption rules out leverage effects.
Why could leverage effects be allowed for in Proposition 2?
Proposition 2 assumed that X follows a semimartingale. Therefore,
after a discretization approximation, a proof could be based on
the powerful martingale methods as in, e.g., Jacod and Shiryaev
(2003). Here, however, market microstructure noise is allowed for,
which is not a semimartingale. Therefore, without imposing more
structure on the estimator (such as approximate additivity in X and
the noise as in the Two Scales estimator example), this technique
cannot be used.

As discussed in previous sections, θ longl and θ shortl do not
estimate θ , since they use only information about the volatility
path on a small time interval, whereas the volatility is changing
throughout the interval [0, 1]. Let us denote by θ longl and θ shortl

the respective quantities they estimate, and by V short
l and V long

l
what can be thought of as their asymptotic variances. They can be
defined as follows,

θ shortl =

∫ [(l−1)m+J]/n

(l−1)m/n
g1 (σ (u)) du,

V short
l =

∫ [(l−1)m+J]/n

(l−1)m/n
g2 (σ (u)) du

(24)

θ
long
l =

∫ lm/n

(l−1)m/n
g1 (σ (u)) du,

V long
l =

∫ lm/n

(l−1)m/n
g2 (σ (u)) du.

Finally, we make the following assumption,

Assumption A6. For every n, define θ shortl and V short
l by (24), and

define a triangular array

ζ
(n)
l =

n
J


τ 2n
θ shortl − θ shortl

2
− V short

l


.

The array

ζ
(n)
j


satisfies the following conditions

(i)

as n → ∞, sup
l

E

ζ
(n)
l


→ 0.

(ii)

ζ
(n)
j


is Lp bounded for some p > 1.

We now discuss Assumption A6. Assumption A6(i) can be
written equivalently as follows,

as n → ∞, sup
l

E


V short
l

−1
τ 2n
θ shortl − θ shortl

2
→ 1,

as long as V short
l is of order J/n. In other words, Assumption A6(i)

requires that the square of the standardized statistic θ shortl has
asymptotic expectation one. On the full sample,we know from (21)
that the standardizedθn is asymptotically a randomvariable Z with
E

Z2


= 1. Therefore, a sufficient condition for Assumption A6(i)
to hold is that the asymptotic distribution of θ shortl satisfies the
same condition on a subsample. Roughly speaking, we need
the estimator on a subsample, θ shortl , to behave similarly to the
estimator on a full sample,θn.

Assumption A6(ii) is a stronger assumption, and it illustrates
the main idea of the subsampling method. Recall the basic idea
of subsampling as described in the introduction of the paper.
Roughly speaking, in a stationary world, the way subsampling
estimates V is by constructing many random variables with V as
their asymptotic variance. In our nonstationary case, continuity
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in time plays the role of stationarity as it ensures that the same
feature in V is estimated by many subsamples. Assumption A6(ii)
effectively imposes V short

j to be of order J/n, i.e., that there is
enough continuity in V with respect to time. Apart from this
consideration, Assumption A6(ii) requires existence of moments.
This is not an issue for a Brownian semimartingalemodel due to the
local boundedness assumption on the drift and volatility functions,
but becomes a constraint if X also contains other components.
For example, consider a model where observations are sampled
from a Brownian semimartingale with an additive noise ϵ. In
this model, corresponding moments have to be assumed on ϵ for
Assumption A6(ii) to hold. In the case of the Two Time Scales
estimator discussed below, L4+ε boundedness of ϵ is needed,which
is exactly what has been assumed by the authors of Two Time
Scales estimator to derive its asymptotic distribution.

We have the following result.

Theorem 6. Assume (A4), (A5), and (A6). Let J → ∞,m → ∞,
J/m → 0, m/n → 0, and Jmτ 2n n

−2
→ 0. Then,Vsub

p
−→ V

where

Vsub =
Jm
n2

⌊n/m⌋−
l=1

τ 2n


n
J
θ shortl −

n
m
θ longl

2

.

The assumption Jmτ 2n n
−2

→ 0 is determined by the smooth-
ness of the volatility paths. Special cases show up in Proposition 2
and Theorem 4 with τ 2n being replaced by

√
n and n1/6, respec-

tively. All these results assume that volatility follows a Brownian
semimartingale (Assumption A1). If one assumed more smooth-
ness, this assumption could be weakened.

Importantly, exactly the same formula is applied to all models
and estimators, which satisfy the above assumptions. All that
is necessary to calculate the estimator for V is to calculate the
estimator θn on several subsamples, as well as to know the
convergence rate τn. In particular,Vsub simplifies to the formula for
the realized variance in (11) with τn =

√
n, and to the formula for

the Two Time Scales estimator in (20) with τn = n1/6.

5. Simulation study

In this section numerical properties of the proposed estimator
are studied for the example of the Two Time Scales estimator of
Aït-Sahalia et al. (2011) in the case of i.i.d., autocorrelated, or
heteroscedastic market microstructure noise.

The observed log-price Yt is a sum of the efficient log-price Xt
and noise ut . The paths of the efficient log-price are simulated from
the Heston (1993) model:

dXt = (α1 − vt/2) dt + σtdWt

dvt = α2 (α3 − vt) dt + α4v
1/2
t dBt

where vt = σ 2
t ,Wt and Bt are independent Brownianmotions. The

parameters of the efficient log-price process X are chosen to be
the same as in Zhang et al. (2005). They are α1 = 0.05, α2 = 5,
α3 = 0.04, and α4 = 0.5, and they correspond to one year
being a unit of time. For the sake of consistency, we keep these
time units for the rest of the section. We simulate n = 35, 000
observations over one week, i.e., five business days of 6.5 h each.
This is motivated by the fact that GE stock has on average 35,000
observations per week in year 2006, see Section 6. We aim to
estimate weekly integrated variance or IV =

 t
0 σ

2
s ds where t is

one week or 1/50. The volatility path is fixed over simulations to
facilitate comparisons. The volatility path used is plotted in Fig. 5.
Varying the volatility path across simulations does not affect the
theory nor the simulation results.
Fig. 5. Simulated volatility sample path.

Simulation of the noise ut is described in Sections 5.1 and 5.2.
The parameters of the Two Time Scales estimator and of the

subsampling procedure are chosen as follows. We set G1 = 100,
which in our data corresponds to 5 min lower frequency. This is a
very popular choice in practice. We set G2 = 10 in all autocorre-
lated noise simulations, and G2 = 1 for heteroscedastic noise sim-
ulations. Two values of J are considered. The first is J = 2G1 = 200,
and the second is J = 5G1 = 500. For m, three different values are
considered,m = 4J, 10J , and 15J .

The literature does not propose ways of estimating the
asymptotic variance of the Two Time Scales when noise is
autocorrelated or diurnal. However, in the case of i.i.d. noise,
there is an alternative, and this can serve as a benchmark for the
simulation results. In the case of i.i.d. noise, the expression for
asymptotic variance V of the Two Time Scales estimator is

V = c
4
3
t
∫ t

0
σ 4
u du + 8c−2 [Var(u)]2

and the alternative is to estimate each component of V separately.
The easiest component to estimate is [Var(u)]2. A popular
estimator of Var(u) = ω2 isω2 =

RV
2n
.

This has been proposed by, for example, Bandi and Russell (2006,
2008). To estimate integrated quarticity IQ = t

 t
0 σ

4
u du in the

presence of noise is more difficult. A consistent estimator in the
presence of i.i.d. noise, IQ BNHLS, has been proposed by Barndorff-
Nielsen et al. (2008).12 Therefore, we can define the benchmark

12

IQ BNHLS
δ, S = max

θ∗

n

2
,
1n

n−
j=1

δ−2

y2j,· − 2ω2

 
y2j−2,· − 2ω2


,

where

y2j,· =
1
S

S−1−
s=0


Yδ(j+ s

S )
− Yδ(j−1+ s

S )

2
, j = 1, . . . ,n

ω2 = exp

log

ω2


−θ∗

n /RV


n =

1/δ

and whereθ∗
n is a consistent estimator of integrated variance IV . We takeθ∗

n to be
the TSRV estimatorθn . This estimator requires us to chooseδ and S.We use the same
choice as Barndorff-Nielsen et al. (2008) do, for real and simulated data. This choice
is S = n1/2 andδ = n−1/2 . Estimatorω2 corrects the small sample bias inω2 . With
large number of observations, there is no difference between the two estimators in
practice, but we keep the version of Barndorff-Nielsen et al. (2008) anyway.
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estimatorVb = c
4
3
IQ BNHLS + 8c−2

ω2
2
,

which is consistent for V when noise is i.i.d.
To simulate the market microstructure noise, we consider two

cases, autocorrelated and heteroscedastic noise. Combination of
the two is straightforward both in theory and practice and is
therefore omitted.

5.1. Autocorrelated noise

The market microstructure noise is simulated as an MA(1)
process

ui∆ = ϵi∆ + ρϵ(i−1)∆, ϵ ∼ N

0,

ω2

1 − ρ2


,

so that Var(u) = ω2. In the above, ∆ = t/n, t = 1/50 is one
week, and n = 35, 000. Four different values of ρ are considered,
ρ = 0,−0.3,−0.5, and ρ = −0.7.

The size of the noise, ω2, is an important parameter. Here we
build on the careful empirical study of Hansen and Lunde (2006),
who investigate 30 stocks of Dow Jones Industrial Average. As in
Hansen and Lunde (2006), we define noise-to-signal ratio as the
ratio of the variance of the noise to the daily integrated volatility.
Thus, we introduce

λ =
ω2 1/250

0 σ 2
u du

.

Results are simulated for three different noise-to-signal ratios, λ =

0.0001, 0.001, and 0.01, motivated by Hansen and Lunde (2006).
The range of estimated λ for the data of our empirical study is
between 0.001 and 0.0019, see Section 6.

Results are represented in terms of coverage probabilities of
95% two-sided, left-sided, and right-sided confidence intervals for
IV . Results for noise-to-signal ratios λ = 0.0001, 0.001, and
0.01 are collected in Tables 2–4, respectively. We see that the
subsampling estimator performs well in all scenarios.Vb performs
well in the scenario it is designed for, which is the uncorrelated
noise case. As the correlation increases, estimated values of Vb
decrease, resulting in undercoverage. This effect is less pronounced
for smaller noise cases. This is to be expected given that Vb is
consistent for V when noise is zero.

This simulation study effectively documents the well known
fact that one should not calculate estimators that are not robust
to autocorrelation with autocorrelated data. In practice, it can be
partly remedied by using sparse data. However, this strategy does
not help in general when noise is time-varying. Time-varying noise
is an empirical fact that has not received much attention in the
nonparametric volatility literature.

5.2. Heteroscedastic noise

We now adopt the noise model of Kalnina and Linton (2008) as
in Eq. (17) where noise displays time-varying heteroscedasticity.
How to find the closest equivalent of the noise-to-signal ratio for
this case? We know that
RV
2n

p
→

1
t

∫ t

0
ω2(u)du.

Hence, the most natural definition of noise-to-signal ratio is the
ratio of the integrated variance of the noise to the integrated
variance of the latent price,

λ =

1
t

 t
0 ω

2(u)du t
0 σ

2
u du

,

where t = 1/250 keeps the horizon of integration to be one day.
This is a lucky situation where conventional estimates of λ
motivated by themisspecified homoscedastic framework estimate
consistently the λ in the true more general heteroscedastic
framework. Thus, exactly the same values of λ are appropriate
for the simulation setup, λ = 0.0001, 0.001, and 0.01. This
equivalence does not hold for higher moments of noise, as
discussed in Section 3, having implications on the conventional
estimates of the asymptotic variance of the Two Scales estimator.

For the shape of heteroscedasticity, we take the simplest
possible design motivated by ‘‘U-shape’’, a parabola. It is simple
and easy to replicate, but is not meant to be realistic and can be
improved in many directions.13 We set

ω2(u) = a

u
t

−
1
2

2

, u ∈ [0, t] (25)

where t = 1/50 and a is a constant chosen to deliver values of
λ = 0.0001, 0.001, or 0.01. Simple calculation shows it implies
setting a = 12λ

 t
0 σ

2(u)du.
Results are collected in Table 5. Perhaps surprisingly, both

methods seem to work well. Is this result to be expected? In this
case, the asymptotic variance of the Two Scales estimator is

V = c
4
3
t
∫ t

0
σ 4
u du  

Vsignal

+ 8c−2 1
t

∫ t

0
ω4(u)du  

Vnoise

. (26)

As discussed in Section 3, by Jensen’s inequality, Vnoise would be
underestimated by Va. In particular, Vnoise is underestimated by a
factor of

1
t

 t
0 ω

4(u)du
1
t

 t
0 ω

2(u)du
2 ,

which equals 1.8 when Eq. (25) is true. Estimation of the
first part depends on how IQ BNHLS behaves in the presence of
heteroscedastic noise, and it turns out it has a positive bias in all
our simulations. AlthoughVb consists of two components that are
both strongly biased, they tend to cancel out, andVb is at most 20%
away from the true value.

We conclude this section with two remarks. First, a class of
volatility estimators not used in this paper are the pre-averaging
estimators recently proposed by Jacod et al. (2009). This method
can estimate IV , IQ , and other volatility functionals in the presence
of noise. Although not robust to autocorrelation in the noise, it is
robust with respect to heteroscedasticity considered here.

Second, the Two Time Scales estimator is in fact inconsistent in
the presence of heteroscedasticity of the noise of this form. This has
been shown by Kalnina and Linton (2008) who propose a modifi-
cation, jittered TSRV,14 which restores consistency. Inconsistency
arises due to a bias from the end effects. In our simulations, jittered
TSRV reduces the bias of the TSRV estimator on average 4 times
in the large noise case. However, the magnitude of this bias is too
small to show very different results in terms of coverage probabil-
ities. Therefore, we do not report the results for the jittered TSRV.

13 We consider the interval of a week. Thus, a very stylized model of diurnal
heteroscedasticity would be 5 parabolas instead,

ω2(u) = a
5−

i=1

1

u ∈

[
(i − 1)t

5
,
it
5

]
5u
t

− i +
1
2

2

, u ∈ [0, t] .

Moreover, a reverse J-shape is typically a better approximation. Also, a data driven
method would be more realistic, but that would decrease the transparency and
replicability of the simulation setup.
14 This is not in any way related to jittering of Barndorff-Nielsen et al. (2008).
They introduce a modification for Realized Kernels needed to enable estimation of
confidence intervals for Realized Kernels in the presence of i.i.d. noise.
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Table 1
Summary statistics.

Num. of obs. ω IV daily λ
MMM 810,835 0.0004 0.00096 0.0019
MSFT 2,368,013 0.0003 0.00089 0.0011
IBM 1,226,468 0.0003 0.00076 0.0013
AIG 1,054,541 0.0003 0.00070 0.0017
GE 1,835,057 0.0002 0.00057 0.0010
INTC 2,651,006 0.0004 0.00155 0.0010

However, it is important to use the jittered version if noise appears
to be heteroscedastic and if avoiding bias is important. Moreover,
this correction is strictly positive and in practice almost completely
solves the problem that TSRV can be negative.

6. Empirical analysis

This section applies the proposed subsampling method to
high frequency data from the NYSE TAQ database, and compares
it to the benchmark estimator Vb, which is introduced in the
previous section. The data consists of full record transaction price
data of 6 stocks for year 2006. The six stocks are American
International Group (AIG), General Electric (GE), International
Business Machines (IBM), Intel (INTC), 3M (MMM), and Microsoft
(MSFT).

We first describe the data pre-processing steps. First we obtain
raw data of these six stocks for the whole year 2006, time stamped
between 9:30 a.m. till 4 p.m. The first column of Table 5 in the
Appendix lists the number of observations in this raw data set
for each stock. Following Aït-Sahalia et al. (2011), data from all
exchanges is retained and zero returns are removed. This means
deleting a large part of data (see the second column of Table 5),
since these flat trading periods can be quite long. Griffin and
Oomen (2008) show that, in the Realized Volatility case, this
adjustment of data improves precision of estimation. Jumps are
also removed,15since the additive market microstructure noise
model (13) does not allow for jumps (see the third column of
Table 5). There is also an additional issue to consider, which
Barndorff-Nielsen et al. (2009) denote as local trends or ‘‘gradual’’
jumps. These authors notice that the realized kernel, which is the
estimator of integrated variance they propose, does not behave
well in the presence of these ‘‘gradual’’ jumps. Barndorff-Nielsen
et al. (2009) notice that these local trends are associated with
high volumes traded, and conjecture that they are due to non-
trivial liquidity effects. The authors replace themwith one genuine
jump, but conclude that they do not have an automatic way
of detecting episodes of local trends. The subsampling method
proposed in the current paper is also vulnerable to such price
behavior. Our strategy to identify these gradual jumps is based
on the fact that they should look like genuine jumps on a lower
frequency. Therefore, we construct a time series of lower (five
minute) frequency data, and set to zero those lower frequency
returns that are larger than seven weekly standard deviations.

Table 1 contains some summary statistics of the resulting data
set. The first column contains the number of observations used for
estimation for each stock. The second column reports a measure of

15 Jumps are identified as deviations of the log-returns that are larger than five
standard deviations on a moving window of 500 observations. This is motivated by
the thresholding technique of filtering out jumps, first proposed by Cecilia Mancini
in a series of papers (e.g., Mancini, 2004), see also Aït-Sahalia and Jacod (2009),
Eq. (21). Returns containing an identified jump are deleted.
the noise (a square root of RV/2n, calculated on skip-10-ticks data
for the whole year 2006). For IV estimation, we calculate the Two
Time Scales estimator for each day in 2006, then average across
days to obtain IV daily (G1 is the average number of transactions in
5 min; G2 = 10). The fourth column reports

λ =
RV/2nIV daily

.

The returns of all these stocks display large negative autocorrela-
tion similar to GE in Fig. 4(b).

The asymptotic variance of the Two Time Scales estimator is
estimated for each of the 52 weeks in year 2006. We conjecture
that as long as the distance between observations is of order 1/n,
the underlying theory can be extended to the non-equidistant
observations case, at least when the observation times are
nonstochastic. Therefore, the estimation is done in tick time, as
suggested in Barndorff-Nielsen et al. (2008) and other authors. This
also applies to summary statistics.

The results are displayed in Fig. 6 in the Appendix, in terms
of 95% confidence intervals for weekly integrated variance. The
Two Time Scales estimate θn is in the center of both confidence
intervals by construction. The subsampling confidence intervals
for Two Time Scales are usually wider than confidence intervals of
the benchmarkmethodVb. From our simulations, we conclude this
might be due to negative bias of theVb estimator in the presence
of negatively autocorrelated returns. This is because all six stocks
have strongly negatively correlated returns, and we know from
Section 5 that Vb is downward biased in this case. On the other
hand, the subsampling estimator is immune to autocorrelation.
The figures also show a lot of variability in the estimates of V .
This is mainly due to variability of the Two Time Scales estimates,
with large estimates of V corresponding to largeθn and vice versa.
Thus, episodes of high volatility generally correspond to episodes
of high volatility of volatility. Though not reported here, these also
correspond to weeks with very large numbers of transactions and
large volumes traded.

7. Conclusion

This paper develops an automated method for estimating the
asymptotic variance of an estimator in noisy high frequency data.
The method applies to an important general class of estimators,
which includes many estimators of integrated variance. The new
method can substantially simplify the inference question for an
estimator, which has an asymptotic variance that is hard to derive
or takes a complicated form. An example of such a case is the
integrated variance estimator of Aït-Sahalia et al. (2011), in the
presence of autocorrelated heteroscedastic market microstructure
noise. There is no alternative inferential method available in the
literature in this case.

A question that is yet to be addressed rigorously is a data-
driven bandwidth choice. Several choices for the Two Time Scales
estimator are suggested in the Monte Carlo section.

A very promising extension that will be considered in a future
paper is inference for a multivariate parameter. Subsampling nat-
urally produces positive semi-definite estimated variance–covar-
iance matrices, which can be very important for applications. For
estimators like Realized Volatility, all the results extend readily to
the multivariate case. The real challenge, however, arises due to
the additional complications, which are not present in the univari-
ate case. These concern the fact that different stocks do not trade at
the same time or so-called asynchronous trading. Also, uncertainty
about the observation times becomesmuchmore important in the
multivariate context.
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Appendix A. Proofs

Since {σt} , {σt} , {µt} and {µt} are locally bounded, it can
be assumed, without loss of generality, that they are uniformly
bounded by Cσ (see Barndorff-Nielsen et al. (2006), Section 3). We
use C to denote a generic constant that is different from line to line.

A.1. Proof of Proposition 1

By Cauchy–Schwarz and Burkholder–Davis–Gundy inequality
(Revuz and Yor, 2005, p. 160),

Eθn,m,l =

ml−
i=m(l−1)

E

Xi/n − X(i−1)/n

2
≤ C

ml−
i=m(l−1)

∫ i/n

(i−1)/n
σ 4
u du ≤ CCσ

m
n
,

Varθn,m,l
=

ml−
i′=m(l−1)

ml−
i=m(l−1)

Cov
[

Xi/n − X(i−1)/n
2
,

Xi′/n − X(i′−1)/n

2]

≤

ml−
i′=m(l−1)

ml−
i=m(l−1)

E
[

Xi/n − X(i−1)/n
2 Xi′/n − X(i′−1)/n

2]

≤

ml−
i′=m(l−1)

ml−
i=m(l−1)

E


Xi/n − X(i−1)/n
41/2

× E
[

Xi′/n − X(i′−1)/n

4]1/2
≤ C

ml−
i′=m(l−1)

ml−
i=m(l−1)

E

∫ i/n

(i−1)/n
σ 4
u du

2
1/2

× E

∫ i′/n

(i′−1)/n
σ 4
u du

2
1/2

≤ CCσm2n−2

for some constant C . Hence,θn,m,l = Op

m
n


and

VPR = m ×
1
K

K−
l=1

θn,m,l −θn2
= mθ2n − 2θnm ×

1
K

K−
l=1

θn,m,l + m ×
1
K

K−
l=1

θn,m,l2
= mθ2n − 2

m
K
θ2n +

m
K

K−
l=1

θn,m,l2
= mθ2n + op(m).

The result now follows by consistency ofθn for θ . �

A.2. Proof of Proposition 2

Before proceeding to the main proof, we state two useful
inequalities that hold when X and its volatility are Brownian
semimartingales. First, for any q > 0

E

|σt+s − σt |

q
|Ft


≤ Csq/2. (27)
This holds because

E

|σt+s − σt |

q
|Ft


= E
∫ s+t

t
µudu +

∫ s+t

t
σudWu

q |Ft


≤ E

∫ s+t

t
µudu

q |Ft


+ E

∫ s+t

t
σudWu

q |Ft


≤ Csq + CE

∫ s+t

t
σ 2
u du

q/2 |Ft


≤ Csq/2

where the Davis–Burkholder–Gundy inequality (Revuz and Yor,
2005, p. 160) is used to obtain the second transition.

The second inequality is as follows, see Jacod (2007). For for all
q > 1,

E

|Xk.i|

q
F (k−1)m+i−1

n


≤ C


1
n

1∧q/2

(28)

where

Xk.i =
√
n

σm(k−1)

n
1W (k−1)m+i

n
−1X (k−1)m+i
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dWu
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.

Introduce the following notation,

VDISCR
sub =

1
K

K−
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2σ 4
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K

E
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J
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We want to show

Vsub = J ×
1
K
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
n
J
θ shortl −

n
m
θ longl

2
p

→ V

= 2
∫ 1

0
σ 4
u du.

First, by Riemann integrability of σ ,

VDISCR p
→ V = 2

∫ 1

0
σ 4
u du.

To prove Proposition 2, proceed in three steps. Prove Vsub −

E
V  p

→ 0, then E
V DISCR − E

V  p
→ 0, and finally E

V DISCR −

VDISCR p
→ 0.
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The first step is to show
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By Lenglart’s inequality (see e.g. Podolskij, 2006), it is sufficient
to show that
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for some constant C not depending on k, by repeated use of the
Cauchy–Schwarz inequality and
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for all q > 0, i = 1, . . . ,m, and Cq some constant depending on q
only. Hence,
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The first step is thus proved, providedmJ2n−1
→ 0.

The second step is to show
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2
−


1X (k−1)m+i

n

2

−
n
J

J−
i=1


σ 2

m(k−1)
n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

22
= Ek

 m−
i=1

ci

[
σ 2

m(k−1)
n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2]2


=

m−
i=1

c2i Ek

[
σ 2

m(k−1)
n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2]2
=

m−
i=1

m−
i′=1

cici′Ek

[
σ 2

m(k−1)
n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2]
×

[
σ 2

m(k−1)
n


1W (k−1)m+i′

n

2
−


1X (k−1)m+i′

n

2]
≤ Cn−5/2

m−
i=1

c2i + Cn−3
m−
i=1

m−
i′=1

|ci| |ci′ |

≤ Cn−5/2 n
2

J
+ Cn−3n2

= Cn−1/2J−1
+ Cn−1

because

Ek

[
σ 2

m(k−1)
n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2]2
= Ek


σm(k−1)

n
1W (k−1)m+i

n
−1X (k−1)m+i

n

2
×


σm(k−1)

n
1W (k−1)m+i

n
+1X (k−1)m+i

n

2
≤


Ek


σm(k−1)

n
1W (k−1)m+i

n
−1X (k−1)m+i

n

4
×


Ek


σm(k−1)

n
1W (k−1)m+i

n
+1X (k−1)m+i

n

4
≤ C


1
n3


1
n2

= Cn−5/2

and, for i < i′,Ek

[
σ 2

m(k−1)
n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2]
×

[
σ 2

m(k−1)
n


1W (k−1)m+i′

n

2
−


1X (k−1)m+i′

n

2]
≤ Ek

σ 2
m(k−1)

n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2
× E

[σ 2
m(k−1)

n


1W (k−1)m+i′

n

2
−


1X (k−1)m+i′

n

2 F (k−1)m+i
n

]
≤ Cn−3/2Ek

[σ 2
m(k−1)

n


1W (k−1)m+i

n

2
−


1X (k−1)m+i

n

2]
≤ Cn−3.

The first part is the square root of

EkA2
= Ek

αlong
k −αshort

k +θ longk −θ shortk

2
= Ek

 m−
i=1

ci

[
σ 2

m(k−1)
n


1W (k−1)m+i

n

2
+


1X (k−1)m+i

n

2]2


≤ C .

Combining both A and B terms, we obtain

E
γ DISCR

k − γk
 F k−1

K


≤ Cn−1/4J−1/2

+ Cn−1/2,
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from which the second stepE V DISCR − E
V  ≤

J
K

K−
k=1

E
γ DISCR

k − γk
 F k−1

K


≤ CJn−1/4J−1/2

+ CJn−1/2 p
→ 0

follows, provided J2/n → 0, which is implied bymJ2n−1
→ 0.

Now we prove the third step.

E

γ DISCR
k

F k−1
K


= σ 4

m(k−1)
n

E


n
J

J−
i=1


W (k−1)m+i

n
− W (k−1)m+i−1

n

2
−

n
m

m−
i=1


W (k−1)m+i

n
− W (k−1)m+i−1

n

22

= σ 4
m(k−1)

n

2
J

− σ 4
m(k−1)

n

2
m
.

Thus,

E
V DISCR =

J
K

K−
k=1

E

γ DISCR
k

F k−1
K


=

J
K

K−
k=1

σ 4
m(k−1)

n

2
J

−
J
K

K−
k=1

σ 4
m(k−1)

n

2
m

= VDISCR
sub − Op


J
m


.

This proves consistency of the subsampling method for RV,
providedmJ2n−1

→ 0 and σ satisfies A1. �

A.3. Proof of Proposition 3

Proposition 3 is proved for the special case Q = m. The general
Q case follows by the same steps, but the notation ismore involved.
Denote K = ⌊n/m⌋ and∆δXt = Xt − Xt−δ .

Introduce the same notation as in Proposition 2.

VDISCR
=

m
n

K−
k=1

2σ 4
k−1
K

E
V DISCR =

m
n

K−
k=1


Eγ DISCR

k

F k−1
K


E
V  =

m
n

K−
k=1

E

γk

F k−1
K

 αslow
k = σ 2

m(k−1)
n


∆m

n
Wmk

n

2
γk =

θ slowk −θ fastk

2 αfast
k = σ 2

m(k−1)
n

m−
i=1


∆ 1

n
W i+m(k−1)

n

2
γ DISCR
k =

αslow
k −αfast

k

2
.

Also, denote E

γk

F k−1
K


by En

k−1 [γk]. We want to show

V ′

sub
p

→ V = 2
∫ 1

0
σ 4
u du

where

V ′

sub =
n
m

K−
k=1

θ slowk −θ fastk

2
=

n
m

K−
k=1


∆m

n
Xmk

n

2
−

m−
i=1


∆ 1

n
X i+m(k−1)

n

22

.

First, by Riemann integrability,

VDISCR p
→ V = 2

∫ 1

0
σ 4
u du. (29)

To prove Proposition 3, use the following three steps. ProveV ′

sub − E
V  p

→ 0, then E
V DISCR − E

V  p
→ 0, and finally

E
V DISCR − VDISCR p

→ 0.
The first step is to show

V ′

sub − E
V  = K

K−
k=1


γk − E


γk

F k−1
K


p

→ 0.

By Lenglart’s inequality (see e.g. Podolskij, 2006), it is sufficient
to show that
K−

k=1

E

|Kγk|2

F k−1
K


p

→ 0.

Notice that, by the Burkholder–Davis–Gundy inequality,
Cauchy–Schwarz inequality, and uniform boundedness of σ ,

Ek−1

θ fastk

4
≤

m−
i′′′=1

m−
i′′=1

m−
i′=1

m−
i=1

4


Ek−1

[
∆ 1

n
X i+m(k−1)

n

8]

×
4


Ek−1

[
∆ 1

n
X i′+m(k−1)

n

8]

×
4


Ek−1

[
∆ 1

n
X i′′+m(k−1)

n

8]

×
4


Ek−1

[
∆ 1

n
X i′′′+m(k−1)

n

8]
≤ C

m4

n4
= C

1
K 4

for some constant C , which does not depend on any of the above
parameters. Hence, and by similarity,

Ek−1

θ fastk

4
≤

C
K 4
, Ek−1

θ fastk

3
≤

C
K 4
,

Ek−1

θ fastk

2
≤

C
K 2
,

(30)

Ek−1

θ slowk

4
≤

C
K 4
, Ek−1

θ slowk

3
≤

C
K 3
,

Ek−1

θ slowk

2
≤

C
K 2
.

From here,

Ek−1

γ 2
k


= Ek−1

θ fastk −θ slowk

4
≤ C

1
K 4

and
K−

k=1

E

|Kγk|2

F k−1
K


≤ C

1
K

= o(1).

The second step is to show

E
V DISCR − E

V  = K
K−

k=1

E

γ DISCR
k − γk

F k−1
K


p

→ 0.

It is sufficient to show

K
K−

k=1

E
γ DISCR

k − γk
 → 0.
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Write

K
K−

k=1

E
γ DISCR

k − γk
 = K

K−
k=1

E
αfast

k −αslow
k +θ fastk −θ slowk


×
αfast

k −θ fastk


−
αslow

k −θ slowk


≡ A + B.

As to the first term, we have

A = K
K−

k=1

E
αfast

k −αslow
k +θ fastk −θ slowk

 αfast
k −θ fastk


≤ K

K−
k=1


E
αfast

k −αslow
k +θ fastk −θ slowk

21/2
×


E
αfast

k −θ fastk

21/2
≤ C

K−
k=1


E
αfast

k −θ fastk

21/2
= C

K−
k=1

E


m−
i=1


σm(k−1)

n
∆ 1

n
W i+m(k−1)

n
−∆ 1

n
X i+m(k−1)

n



×


σm(k−1)

n
∆ 1

n
W i+m(k−1)

n
+∆ 1

n
X i+m(k−1)

n

2


1/2

≤ C
K−

k=1


m−

i′=1

m−
i=1

4


E
[
σm(k−1)

n
∆ 1

n
W i+m(k−1)

n
−∆ 1

n
X i+m(k−1)

n

4]

×
4


E
[
σm(k−1)

n
∆ 1

n
W i+m(k−1)

n
+∆ 1

n
X i+m(k−1)

n

4]
×

4


E
[
σm(k−1)

n
∆ 1

n
W i′+m(k−1)

n
−∆ 1

n
X i′+m(k−1)

n

4]

×
4


E
[
σm(k−1)

n
∆ 1

n
W i′+m(k−1)

n
+∆ 1

n
X i′+m(k−1)

n

4]1/2

≤
C

√
n

K−
k=1

m−
i=1

4


E
[
σm(k−1)

n
∆ 1

n
W i+m(k−1)

n
−∆ 1

n
X i+m(k−1)

n

4]

≤
C

√
n

K−
k=1

m−
i=1

E

∫ i+m(k−1)
n

i−1+m(k−1)
n


σm(k−1)

n
− σu

2
du

2


1/4

=
C

√
n

K−
k=1

m−
i=1

E

∫ i+m(k−1)
n

i−1+m(k−1)
n


σ ⌊Ku⌋

K
− σu

2
du

2


1/4

.

In the above, to obtain the second inequality, we used (30). To
obtain the fourth inequality, we used

E
[
σm(k−1)

n
∆ 1

n
W i+m(k−1)

n
+∆ 1

n
X i+m(k−1)

n

4]

≤ CE

∫ i+m(k−1)
n

i−1+m(k−1)
n


σm(k−1)

n
+ σu

2
du

2
 ≤

C
n2
,

which follows by Burkholder–Davis–Gundy inequality. To proceed
with term A, we use the arguments along the lines of the proof of
Lemma1of Barndorff-Nielsen and Shephard (2002). For every i and
k, there exists a constant ci,k s.t.
inf
i−1+m(k−1)

n ≤u≤ i+m(k−1)
n


σ ⌊Ku⌋

K
− σu

2
≤ ci,k ≤ sup

i−1+m(k−1)
n ≤u≤ i+m(k−1)

n


σ ⌊Ku⌋

K
− σu

2
and∫ i+m(k−1)

n

i−1+m(k−1)
n


σ ⌊Ku⌋

K
− σu

2
du = ci,k

1
n
.

Notice that

sup
i,k

ci,k → 0

by right-continuity and boundedness of σ . Then,

A ≤
C

√
n

K−
k=1

m−
i=1

E

∫ i+m(k−1)
n

i−1+m(k−1)
n


σ ⌊Ku⌋

K
− σu

2
du

2


1/4

=
C

√
n

K−
k=1

m−
i=1


E
[
ci,k

1
n

]21/4

= C
K−

k=1

m−
i=1

4

Ec2i,k

1
n

→ 0

by Monotone Convergence Theorem. B → 0 is proved using
exactly the same steps. This proves the second step.

The final step is to show

E
V DISCR − VDISCR p

→ 0.

We have

E

γ DISCR
k

F k−1
K


= σ 4

m(k−1)
n

E

∆m
n
Wmk

n

2
−

m−
i=1


∆ 1

n
W i+m(k−1)

n

22


=
2
K 2
σ 4

m(k−1)
n

+ op


1
K 2


.

Therefore,

E
V DISCR = K

K−
k=1

E

γ DISCR
k

F k−1
K


= K

K−
k=1


2
K 2
σ 4

m(k−1)
n

+ op


1
K 2



=

K−
k=1

2
K 1
σ 4

m(k−1)
n

+ op(1) = VDISCR
+ op(1).

The result follows immediately. �

A.4. Proof of Theorem 4

It is convenient to decompose V short
l into the signal and noise

parts, V short
l = V signal

l + V noise
l where

V signal
l =

4
3
c
∫ [(l−1)m+J]/n

(l−1)m/n
σ 4
u du

V noise
l = 8c−2 J

n
Var (ϵ)2 + 16

J
n
c−2 lim

n→∞

n−
i=1

Cov

ϵ0, ϵi/n

2
.

We first state the following lemma (see Appendix A.4.1 for
proof).
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Lemma 7. Suppose the assumptions of Theorem 4 hold. Then,

m
J

K−
l=1


n1/3 θ shortl − θ shortl

2
− V short

l


p

→ 0.

We conclude from Eq. (27) that

V −

K−
l=1

m
J
V short
l = op(1).

Therefore, to prove Theorem 4 it is sufficient to prove the
negligibility of

Vsub −

K−
l=1

m
J
V short
l =

m
J

K−
l=1


n1/3

θ shortl −
J
m
θ longl

2

− V short
l



=
m
J

K−
l=1


n1/3 θ shortl − θ shortl

2
− V short

l


+ n1/3


θ shortl −

J
m
θ longl

2

+ n1/3

θ shortl −

J
m
θ
long
l

2


+ R,

where R contains cross terms that are op(1) if the three main three
terms are op(1). The first of these three terms is negligible by
Lemma 7. The second term is also negligible by Lemma 7 by taking
m instead of J ,

n1/3m
J

K−
l=1


J
m
θ longl −

J
m
θ
long
l

2

=
J
m

n1/3
K−

l=1

θ longl − θ
long
l

2
=

J
m


V + op(1)


= op(1).

The third term is op(1) by assumption Jmn−5/3
→ 0 and

E
θ shortl −

J
m
θ
long
l

2 ≤ C
J2m
n3
,

which follows from Eq. (27). This concludes the proof of
Theorem 4. �

A.4.1. Proof Lemma 7
We now prove Lemma 7 stated in Appendix A.4. We have the

following decomposition

m
J

K−
l=1


n1/3 θ shortl − θ shortl

2
− V short

l



=
m
J

K−
l=1


n1/3


[Y , Y ](G1)l −

JG1
JG2

[Y , Y ](G2)l − θ shortl

2

− V short
l



=
m
J

K−
l=1


n1/3


[X, X](G1)l − θ shortl + [ϵ, ϵ](G1)l

−
JG1
JG2

[ϵ, ϵ](G2)l

2

− V short
l


+ R1

=
m
J

K−
l=1

[
n1/3


[X, X](G1)l − θ shortl

2
− V signal

l

]

+
m
J

K−
l=1

n1/3


[ϵ, ϵ](G1)l −

JG1
JG2

[ϵ, ϵ](G2)l

2

− V noise
l


+ R1 + R2.
In the first step, we show negligibility of the signal part, i.e.,

m
J

K−
l=1

[
n1/3


[X, X](G1)l − θ shortl

2
− V signal

l

]
= op(1). (31)

For this, we adapt the arguments of Zhang et al. (2005) to the
subsample. We have

[X, X](G1)l = [X, X](1)l + Sl + R3 (32)

where

Sl = 2
J−1−
i=1


1X(l−1)m/n+i/n

 G1∧i−
j=1


1 −

j
G1

 
1X(l−1)m/n+(i−j)/n


where∆Xi/n = Xi/n − X(i−1)/n. R3 arises due to the end effects, see
Zhang et al. (2005), p.1410., and it satisfies R3 = Op


G1n−1


.

The second term in (32) satisfies

S2l =


2

J−1−
i=1


1X[(l−1)m+i]/n

 G1∧i−
j=1


1 −

j
G1

 
1X[(l−1)m+i−j]/n

2

= 4
J−1−
i=1

∫ [(l−1)m+i]/n

[(l−1)m+i−1]/n
σ 2
u du


G1∧i−
j=1


1 −

j
G1



×

1X[(l−1)m+i−j]/n

2

+ op


J

n4/3


= (I)+ (II)+ op


J

n4/3


where

(I) = 4
J−1−
i=1

∫ [(l−1)m+i]/n

[(l−1)m+i−1]/n
σ 2
u du

G1∧i−
j=1


1 −

j
G1

2

×

1X[(l−1)m+i−j]/n

2
= 4

J−1−
i=1

σ 4
[(l−1)m+i−1]/n

1
n2

G1∧i−
j=1


1 −

j
G1

2

+ op


J

n4/3



=
4
3
G1

n2

J−1−
i=1

σ 4
[(l−1)m+i−1]/n + op


J

n4/3


and

(II) = 8
J−1−
i=1

∫ [(l−1)m+i]/n

[(l−1)m+i−1]/n
σ 2
u du

i−1−
k>r≥0


1X[(l−1)m+k]/n


×

1X[(l−1)m+r]/n

 
1 −

i − k
G1

+ 
1 −

i − r
G1

+

= op


J

n4/3


.

The last equality follows from Zhang et al. (2005), p.1410 and the
fact that conditions G1 = cn2/3 and J > G1 imply G1/n < J/n4/3.
Therefore,

S2l =
4
3
G1

n

∫ [(l−1)m+J]/n

(l−1)m/n
σ 4
u du + op


J

n4/3


=

1
n1/3

V signal
l + op


J

n4/3


.

The final piece in (32) to deal with is to show

n1/3m
J

K−
l=1


[X, X](1)l − θ shortl

2
= op(1),
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which follows by following (a simpler version of) the steps of the
proof of Proposition 2. Eq. (31) follows.

Next, we turn to the noise part and prove

m
J

K−
l=1

n1/3


[ϵ, ϵ](G1)l −

JG1
JG2

[ϵ, ϵ](G2)l

2

− V noise
l

 p
→ 0. (33)

Given that noise is a discrete time process, Proposition 1 of Aït-
Sahalia et al. (2011) can be applied directly, with J instead of n (this
is the number of observations used above) to obtain, for each l,

G1
√
J


[ϵ, ϵ](G1)l −

JG1
JG2

[ϵ, ϵ](G2)l



⇒ N


0, 8Var (ϵ)2 + 16 lim

n→∞

n−
i=1

Cov

ϵ0, ϵi/n

2
.

Since noise is mixing over subsamples, we can apply the law of
large numbers to obtain

1
K

K−
l=1

G2
1

J


[ϵ, ϵ](G1)l −

JG1
JG2

[ϵ, ϵ](G2)l

2

p
→ 8Var (ϵ)2 + 16 lim

n→∞

n−
i=1

Cov

ϵ0, ϵi/n

2
=

n
J
c2V noise

l ,

which is equivalent to Eq. (33) given that K = n/m and G1 = cn2/3.
The final step to prove Lemma 7 is to show R1 + R2 = op(1).
We have

R1 =
m
J

K−
l=1

n1/3

 JG1
JG2

[X, X](G2)l

2


+
m
J

K−
l=1

n1/3
[

2 [X, ϵ](G1)l

2]

+
m
J

K−
l=1

n1/3

 JG1
JG2

2 [X, ϵ](G2)l

2
+ R′

1

where, for i = 1, 2,

[X, ϵ](Gi)l =
1
G1

n−G1−
i=1


X(i+G1)/n − Xi/n

 
ϵ(i+G1)/n − ϵi/n


.

The first term in R1 is op(1) because [X, X](G2)l = Op

Jn−1


by substituting G2 for G1 in (31). The second and third terms are
of op(1) by proof of Lemma 1 of Aït-Sahalia et al. (2011), which
implies, for i = 1, 2,

E


[X, ϵ](Gi)l

2
|X


≤ C
1
G2
i
[X, X](Gi)l .

The final terms R′

1 and R2 contain cross terms that are negligible
by Cauchy–Schwarz inequality. �

A.5. Proof of Lemma 5

Most of the proof of the asymptotic distribution of the TSRV
estimator of Aït-Sahalia et al. (2011) remains valid under the
assumptions of Lemma 5. The noise component of the asymptotic
distribution arises from the asymptotic distribution of

−2
1

√
n

n−G1−
i=0

ϵi/nϵ(i+G1)/n + 2
1

√
n

n−G2−
i=0

ϵi/nϵ(i+G2)/n,

see page 26 of Aït-Sahalia et al. (2011). Given that G1/G2 → 0 and

ω


i + G1

n


− ω


i
n


≤ C

G1

n
due to differentiability of ω, the desired result follows. �
A.6. Proof of Theorem 6

Assume n is divisible bym by simplicity. As a first step,we prove

G(n) =
mJ
n2

n/m−
l=1

τ 2n


n
J
θ shortl −

n
J
θ shortl

2
p

→ V . (34)

For any two subsamples l and l′ s.t. l ≠ l′, ζ (n)l has no common
returns with ζ (n)l′ . Therefore, ζ (n)l is strong mixing because R(n) is.
Moreover, if we define

ψ
(n)
i = ζ

(n)
l − E


ζ
(n)
l


,

it is also strong mixing. Therefore, under A6, ψ (n)
i is a uniformly

integrable L1-mixingale as defined in Andrews (1998), towhichwe
can apply Theorem 2 of Andrews (1998) to obtain

m
n

n/m−
l=1

ψ
(n)
i =

m
n

n/m−
l=1


ζ
(n)
l − E


ζ
(n)
l


p

→ 0.

By A4, we have

m
n

n/m−
l=1

ζ
(n)
l =

m
n

n/m−
l=1

n
J


τ 2n
θ shortl − θ shortl

2
− V short

l


p

→ 0

=
m
n

n/m−
l=1

n
J
τ 2n
θ shortl − θ shortl

2
−

m
n

n/m−
l=1

n
J
V short
l

p
→ 0

=
m
n

n/m−
l=1

n
J
τ 2n
θ shortl − θ shortl

2 p
→ V

and so (34) follows.

In a second step, we prove that G(n) −Vsub
p

→ 0.

Vsub − G(n) =
Jmτ 2n
n2

K−
l=1


n
J
θ shortl −

n
m
θ longl

2

−
Jmτ 2n
n2

n/m−
l=1

τ 2n


n
J
θ shortl −

n
J
θ shortl

2

=
Jmτ 2n
n2

K−
l=1

 n
m
θ longl −

n
m
θ
long
l

2
+

Jmτ 2n
n2

K−
l=1


n
m
θ
long
l −

n
J
θ shortl

2

+ 2
Jmτ 2n
n2

K−
l=1

 n
m
θ longl −

n
m
θ
long
l


×


n
m
θ
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l −

n
J
θ shortl


− 2

Jmτ 2n
n2

n/m−
l=1

τ 2n


n
J
θ shortl −

n
J
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

×


n
m
θ longl −

n
J
θ shortl


. (35)
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Fig. 6. 95% Confidence Intervals (CI’s) for weekly IV , for each of 52 weeks in 2006, calculated using the subsampling method (CI’s with bars) orVb (CI’s with lines). TSRV is
the middle of all CI’s by construction.
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Table 2
Coverage probabilities of 95% confidence interval of IV , λ = 0.0001.

J = 200 J = 500 Va

m 800 2000 3000 2000 5000 7500

Two-sided 0.97 0.98 0.98 0.93 0.95 0.95 0.92
ρ = 0 Left-sided 0.95 0.96 0.96 0.92 0.94 0.94 0.91

Right-sided 0.98 0.98 0.99 0.96 0.97 0.97 0.95
Two-sided 0.97 0.98 0.98 0.93 0.96 0.96 0.92

ρ = −0.3 Left-sided 0.95 0.97 0.97 0.92 0.94 0.94 0.91
Right-sided 0.98 0.98 0.98 0.96 0.97 0.97 0.96
Two-sided 0.97 0.98 0.98 0.93 0.95 0.95 0.92

ρ = −0.5 Left-sided 0.95 0.97 0.97 0.92 0.94 0.94 0.92
Right-sided 0.97 0.98 0.98 0.95 0.96 0.96 0.94
Two-sided 0.97 0.98 0.98 0.94 0.96 0.96 0.91

ρ = −0.7 Left-sided 0.95 0.97 0.97 0.92 0.94 0.94 0.9
Right-sided 0.98 0.98 0.98 0.96 0.97 0.97 0.96
Table 3
Coverage probabilities of 95% confidence interval of IV , λ = 0.001.

J = 200 J = 500 Va

m 800 2000 3000 2000 5000 7500

Two-sided 0.97 0.98 0.98 0.93 0.95 0.95 0.92
ρ = 0 Left-sided 0.95 0.96 0.96 0.92 0.93 0.94 0.91

Right-sided 0.98 0.99 0.99 0.96 0.97 0.97 0.95
Two-sided 0.97 0.97 0.98 0.93 0.96 0.96 0.91

ρ = −0.3 Left-sided 0.95 0.96 0.97 0.91 0.94 0.94 0.9
Right-sided 0.98 0.98 0.98 0.96 0.97 0.98 0.96
Two-sided 0.97 0.97 0.98 0.94 0.96 0.96 0.9

ρ = −0.5 Left-sided 0.95 0.96 0.97 0.91 0.94 0.94 0.89
Right-sided 0.98 0.98 0.98 0.96 0.97 0.98 0.95
Two-sided 0.98 0.98 0.98 0.94 0.96 0.96 0.88

ρ = −0.7 Left-sided 0.96 0.97 0.97 0.93 0.94 0.95 0.9
Right-sided 0.97 0.98 0.98 0.95 0.96 0.96 0.91
We have the following decomposition,
n
J
θ shortl −

n
m
θ
long
l

2

=


n
J

∫ [(l−1)m+J]/n

(l−1)m/n
g(u)du −

n
m

∫ lm/n

(l−1)m/n
g(u)du

2

≤


n
J

∫ [(l−1)m+J]/n

(l−1)m/n
(g(u)− g ((l − 1)m/n)) du

2

+


n
m

∫ lm/n

(l−1)m/n
(g(u)− g ((l − 1)m/n)) du

2

+ 2
nJ
∫ [(l−1)m+J]/n

(l−1)m/n
(g(u)− g ((l − 1)m/n)) du


×

 nm
∫ lm/n

(l−1)m/n
(g(u)− g ((l − 1)m/n)) du

 .
These terms are small enough due to A4 and (27) as follows,

E

 Jmτ 2nn2

K−
l=1


n
m

∫ lm/n

(l−1)m/n
(f (u)− f ((l − 1)m/n)) du

2


≤
Jmτ 2n
n2

K−
l=1

E


n
m

∫ lm/n

(l−1)m/n
(f (u)− f ((l − 1)m/n)) du

2

=
Jmτ 2n
n2

K−
l=1

E (f (sl)− f ((l − 1)m/n))2

≤ C
Jmτ 2n
n2

K−
l=1

E (σ (sl)− σ ((l − 1)m/n))2
≤ C
Jmτ 2n
n2

K−
l=1

m
n

= C
Jmτ 2n
n2

→ 0 (36)

by assumption. In the above, the first equality follows by the mean
value theorem, which applies by differentiability of∫ t

(l−1)m/n
(f (u)− f ((l − 1)m/n)) du (37)

in time.
Next, we show

Jmτ 2n
n2

K−
l=1

 n
m
θ longl −

n
m
θ
long
l

2 p
→ 0.

By substitutingm for J in

G(n) =
mJ
n2

n/m−
l=1

τ 2n


n
J
θ shortl −

n
J
θ shortl

2
p

→ V ,

we obtain

m2

n2

n/m−
l=1

τ 2n

 n
m
θ longl −

n
m
θ
long
l

2 p
→ V ,

and so by multiplying the left hand side by J/m, (37) follows since
J/m → 0.

The remaining cross-terms in (35) are negligible by the above
results and Cauchy–Schwarz inequality. This concludes the proof
of Theorem 6. �

Appendix B. Tables and figures

See Tables 2–6.



282 I. Kalnina / Journal of Econometrics 161 (2011) 262–283
Table 4
Coverage probabilities of 95% confidence interval of IV X , λ = 0.01.

J = 200 J = 500 Va

m 800 2000 3000 2000 5000 7500

Two-sided 0.97 0.98 0.98 0.94 0.96 0.96 0.92
ρ = 0 Left-sided 0.95 0.96 0.97 0.92 0.94 0.94 0.9

Right-sided 0.98 0.98 0.98 0.97 0.98 0.98 0.96
Two-sided 0.97 0.98 0.98 0.93 0.96 0.96 0.82

ρ = −0.3 Left-sided 0.96 0.97 0.97 0.94 0.95 0.95 0.85
Right-sided 0.97 0.98 0.98 0.94 0.96 0.96 0.88
Two-sided 0.98 0.98 0.98 0.94 0.96 0.96 0.7

ρ = −0.5 Left-sided 0.95 0.96 0.96 0.93 0.94 0.94 0.8
Right-sided 0.97 0.98 0.98 0.96 0.97 0.97 0.84
Two-sided 0.96 0.97 0.98 0.94 0.96 0.95 0.77

ρ = −0.7 Left-sided 0.94 0.95 0.95 0.92 0.94 0.94 0.83
Right-sided 0.97 0.98 0.98 0.96 0.97 0.97 0.84
Table 5
Heteroscedastic noise. Coverage probabilities of 95% confidence interval of IV .

J = 200 J = 500 Va

m 800 2000 3000 2000 5000 7500

Two-sided 0.96 0.98 0.98 0.93 0.95 0.96 0.94
λ = 0.0001 Left-sided 0.95 0.96 0.96 0.91 0.93 0.93 0.92

Right-sided 0.98 0.99 0.99 0.97 0.97 0.98 0.97
Two-sided 0.97 0.98 0.98 0.93 0.95 0.96 0.94

λ = 0.001 Left-sided 0.95 0.96 0.96 0.92 0.93 0.94 0.93
Right-sided 0.97 0.99 0.99 0.95 0.96 0.97 0.96
Two-sided 0.96 0.97 0.98 0.93 0.94 0.95 0.97

λ = 0.01 Left-sided 0.93 0.94 0.95 0.90 0.91 0.91 0.94
Right-sided 0.99 0.99 0.99 0.98 0.98 0.98 0.98
Table 6
Summary of data manipulations.

Raw data Step 1: flat trading Step 2: jumps Step 3: gradual jumps

MMM 1,797,107 983,705 (54.74%) 2567 (0.14%) 5,963 (0.33%)
MSFT 18,738,034 16,364,458 (87.33%) 5563 (0.03%) 18,795 (0.10%)
IBM 2,786,649 1,556,475 (55.85%) 3706 (0.13%) 7,525 (0.27%)
AIG 2,807,065 1,749,345 (62.32%) 3179 (0.11%) 10,433 (0.37%)
GE 7,288,596 5,449,832 (74.77%) 3707 (0.05%) 12,991 (0.18%)
INTC 21,155,095 18,498,295 (87.44%) 5794 (0.03%) 21,119 (0.10%)
References

Aït-Sahalia, Y., Jacod, J., 2009. Testing for jumps in a discretely observed process.
Annals of Statistics 37, 184–222.

Aït-Sahalia, Y., Mykland, P., Zhang, L., 2011. Ultra high frequency volatility
estimation with dependent microstructure noise. Journal of Econometrics 160,
190–203.

Aldous, D.G., Eagleson, G.K., 1978. On mixing and stability of limit theorems. The
Annals of Probability 6, 325–331.

Andersen, T.G., Bollerslev, T., 1997. Intraday periodicity and volatility persistence in
financial markets. Journal of Empirical Finance 5, 115–158.

Andersen, T.G., Bollerslev, T., 1998. Answering the skeptics: yes, standard volatility
models do provide accurate forecasts. International Economic Review 39 (4),
885–905.

Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001. The distribution of
exchange rate volatility. Journal of the American Statistical Association 96,
42–55. Correction published in 2003, volume 98, page 501.

Andreou, E., Ghysels, E., 2002. Rolling-sample volatility estimators: some new
theoretical, simulations and empirical results. Journal of Business and Economic
Statistics 20, 363–375.

Andrews, D.W.K., 1998. Laws of large numbers for dependent non-identically
distributed random variables. Econometric Theory 4, 458–467.

Bandi, F.M., Russell, J.R., 2006. Separating microstructure noise from volatility.
Journal of Financial Economics 79, 655–692.

Bandi, F.M., Russell, J.R., 2008. Microstructure noise, realized variance, and optimal
sampling. Review of Economic Studies 75, 339–369.

Barndorff-Nielsen, O.E., Shephard, N., Winkel, M., 2005. Limit theorems for
multipower variation in the presence of jumps. Stochastic Processes and
Applications 116, 796–806.

Barndorff-Nielsen, O.E., Graversen, S.E., Jacod, J., Shephard, N., 2006. Limit theorems
for bipower variation in financial econometrics. Econometric Theory 22,
677–719.
Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N., 2008. Designing
realised kernels to measure the ex-post variation of equity prices in the
presence of noise. Econometrica 76 (6), 1481–1536.

Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., Shephard, N., 2009. Realised kernels
in practice: trades and quotes. Econometrics Journal 12, C1–C32.

Barndorff-Nielsen, O.E., Shephard, N., 2002. Econometric analysis of realised
volatility and its use in estimating stochastic volatility models. Journal of the
Royal Statistical Society. Series B 64, 253–280.

Christensen, K., Oomen, R.C.A., Podolskij, M., 2010. Realised quantile-based
estimation of the integrated variance. Journal of Econometrics 159, 74–98.

Christensen, K., Podolskij, M., Vetter, M., 2009. Bias-correcting the realized range-
based variance in the presence of market microstructure noise. Finance and
Stochastics 13, 239–268.

Delbaen, F., Schachermayer, W., 1994. A general version of the fundamental
theorem of asset pricing. Mathematische Annalen 300 (3), 463–520.

Foster, D.P., Nelson, D.B., 1996. Continuous record asymptotics for rolling sample
variance estimators. Econometrica 64, 139–174.

Fleming, J., Kirby, C., Ostdiek, B., 2003. The economic value of volatility timing using
‘‘realized’’ volatility. Journal of Financial Economics 67, 473–509.

Gerety, M.S., Mulherin, H., 1994. Price formation on stock exchanges: the evolution
of trading within the day. Review of Financial Studies 6, 23–56.

Giot, P., Laurent, S., 2004. Modelling daily value-at-risk using realized volatility and
ARCH type models. Journal of Empirical Finance 11, 379–398.

Gonçalves, S.,Meddahi, N., 2009. Bootstrapping realized volatility. Econometrica 77,
283–306.

Griffin, J., Oomen, R., 2008. Sampling returns for realized variance calculations: tick
time or transaction time? Econometric Reviews 27, 230–253.

Hansen, P.R., Lunde, A., 2006. Realized variance and market microstructure noise
(with comments and rejoinder). Journal of Business and Economic Statistics 24,
127–218.

Harris, L., 1986. A transaction data study of weekly and intradaily patterns in stock
returns. Journal of Financial Economics 16 (1), 99–117.



I. Kalnina / Journal of Econometrics 161 (2011) 262–283 283
Heston, S., 1993. A closed-form solution for options with stochastic volatility with
applications to bonds and currency options. Review of Financial Studies 6,
327–343.

Jacod, J., 2007. Statistics andhigh frequencydata. Lecture notes. Séminaire Européen
de Statistique 2007.

Jacod, J., 2008. Asymptotic properties of realized power variations and related
functionals of semimartingales. Stochastic Processes and their Applications 118,
517–559.

Jacod, J., Li, Y., Mykland, P.A., Podolskij, M., Vetter, M., 2009. Microstructure noise
in the continuous case: the pre-averaging approach. Stochastic Processes and
their Applications 119, 2249–2276.

Jacod, J., Shiryaev, A.N., 2003. Limit Theorems for Stochastic Processes. Springer.
Kalnina, I., Linton, O.B., 2008. Estimating quadratic variation consistently in the

presence of correlatedmeasurement error. Journal of Econometrics 147, 47–59.
Kleidon, A., Werner, I., 1996. UK and US trading of British cross-listed stocks: an

intraday analysis of market integration. Review of Financial Studies 9, 619–644.
Kristensen, D., 2010. Nonparametric filtering of the realised spot volatility: a kernel-

based approach. Econometric Theory 26, 60–93.
Lahiri, S.N., 1996. On inconsistency of estimators based on spatial data under infill

asymptotics. Sankya: The Indial Journal of Statistics, Series A 58, 403–417.
Lahiri, S.N., Kaiser, M.S., Cressie, N., Hsu, N., 1999. Prediction of spatial cumulative

distribution functions using subsampling. Journal of the American Statistical
Association 94, 86–97.

Lockwood, L.J., Linn, S.C., 1990. An examination of stock market return volatility
during overnight and intraday periods, 1964–1989. Journal of Finance 45,
591–601.

Mancini, C., 2004. Estimation of the characteristics of the jumps of a general Poisson-
diffusion model. Scandinavian Actuarial Journal 2004 (1), 42–52.
McInish, T.H., Wood, R.A., 1992. An analysis of intraday patterns in bid/ask spreads
for NYSE stocks. Journal of Finance 47, 753–764.

Meddahi, N., Mykland, P., 2010. Fat tails or many small jumps? The near-diffusion
paradigm. Work in Progress.

Mikosch, T., Starica, C., 2003. Stock market risk-return inference. An unconditional,
non-parametric approach. Available at SSRN: http://ssrn.com/abstract=882820.

Mykland, P., Zhang, L., 2009. Inference for continuous semimartingales observed at
high frequency: a general approach. Econometrica 77, 1403–1445.

Podolskij, M., 2006. New theory on estimation of integrated volatility with
applications. Ph.D. Thesis. Bochum University.

Podolskij, M., Ziggel, D., 2007. Boostrapping bipower variation. Technical Report.
Ruhr-University of Bochum.

Politis, D.N., Romano, J.P., 1994. Large sample confidence regions based on
subsamples under minimal assumptions. Annals of Statistics 22, 2031–2050.

Politis, D.N., Romano, J.P., Wolf, M., 1997. Subsampling for heteroscedastic time
series. Journal of Econometrics 81, 281–317.

Politis, D.N., Romano, J.P., Wolf, M., 1999. Subsampling. Springer-Verlag, New York.
Revuz, D., Yor, M., 2005. Continuous Martingales and Brownian Motion. Springer-

Verlag, New York.
Zhang, L., 2006. Efficient estimation of stochastic volatility using noisy observations:

a multi-scale approach. Bernoulli 12 (6), 1019–1043.
Zhang, L., Mykland, P., Aït-Sahalia, Y., 2005. A tale of two time scales: determining

integrated volatility with noisy high-frequency data. Journal of the American
Statistical Association 100, 1394–1411.

Zhou, B., 1996. High-frequency data and volatility in foreign-exchange rates. Journal
of Business and Economic Statistics 14, 45–52.

http://ssrn.com/abstract%3D882820

	Subsampling high frequency data
	Introduction
	Description of resampling schemes
	Failure of the traditional resampling schemes
	The new subsampling scheme
	An alternative subsampling scheme

	Inference for the two scales realized volatility estimator
	Inference for a general estimator
	Simulation study
	Autocorrelated noise
	Heteroscedastic noise

	Empirical analysis
	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 4
	Proof Lemma 7

	Proof of Lemma 5
	Proof of Theorem 6

	Tables and figures
	References


