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We propose an econometric model that captures the effects of market microstructure on a latent
price process. In particular, we allow for correlation between the measurement error and the return
process and we allow the measurement error process to have a diurnal heteroskedasticity. We propose
a modification of the TSRV estimator of quadratic variation. We show that this estimator is consistent,
with a rate of convergence that depends on the size of the measurement error, but is no worse than
n−1/6. We investigate in simulation experiments the finite sample performance of various proposed
implementations.
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1. Introduction

It has been widely recognized that using very high frequency
data requires taking into account the effect of market microstruc-
ture (MS) noise. We are interested in the estimation of the
quadratic variation of a latent price in the case where the observed
log-price Y is a sum of the latent log-price X that evolves in con-
tinuous time and an error u that captures the effect of MS noise.
There is by now a large amount of literature that uses realized

variance as a nonparametric measure of volatility. The justification
is that, in the absence of market microstructure noise, it is a
consistent estimator of the quadratic variation as the time between
observations goes to zero. For a literature review, see Barndorff-
Nielsen and Shephard (2007). In practice, ignoring microstructure
noise seems to work well for frequencies below 10min. For higher
frequencies realized variance is not robust, as has been evidenced
in the so-called ‘volatility signature plots’, see, e.g. Andersen et al.
(2000).
The additivemeasurement error model where u is independent

of X and i.i.d. over time was first introduced by Zhou (1996).
The usual realized volatility estimator is inconsistent under this
assumption. The first consistent estimator of quadratic variation
of the latent price in the presence of MS noise was proposed
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by Zhang et al. (2005a) who introduced the Two Scales Realized
Volatility (TSRV) estimator, and derived the appropriate central
limit theory. TSRV estimates the quadratic variation using a
combination of realized variances computed on two different time
scales, performing an additive bias correction. It has a rate of
convergence n−1/6. Zhang (2006) introduced themore complicated
Multiple Scales RealizedVolatility (MSRV) estimator that combines
multiple (∼n1/2) time scales, which has a convergence rate of
n−1/4. This is known to be the optimal rate for this problem. Both
papers assumed that theMS noisewas i.i.d. and independent of the
latent price. This assumption, according to an empirical analysis
of Hansen and Lunde (2006), ‘‘seems to be reasonable when
intraday returns are sampled every 15 ticks or so’’. Further studies
have tried to relax this assumption to allow modelling of even
higher frequency returns. Aït-Sahalia et al. (2006a) modify TSRV
and MSRV estimators and achieve consistency in the presence of
serially correlatedMS noise. Another class of consistent estimators
of the quadratic variation was proposed by Barndorff-Nielsen
et al. (forthcoming). They introduce realized kernels, a general
class of estimators that extends the unbiased but inconsistent
estimator of Zhou (1996), and is based on a general weighting
of realized autocovariances as well as realized variances. They
show that realized kernels can be designed to be consistent and
derive the central limit theory. They show that for particular
choices of weight functions they can be asymptotically equivalent
to TSRV and MSRV estimators, or even more efficient. Apart from
the benchmark setupwhere the noise is i.i.d. and independent from
the latent price Barndorff-Nielsen et al. (forthcoming) have two
additional sections, one allowing for AR(1) structure in the noise,
another with an additional endogenous term, albeit one that is
asymptotically degenerate. In discrete time framework, Robinson
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(1986) shows how to deal with errors-in-variables problem when
errors are possibly strongly serially correlated, contain seasonal
effects and trends.
We generalize the standard additive noise model (where

the noise is i.i.d. and independent from the latent price)
in three directions. The first generalization is allowing for
(asymptotically non-degenerate) correlation between MS noise
and the latent returns. This is motivated by a paper of Hansen
and Lunde (2006), where, for very high frequencies: ‘‘the key
result is the overwhelming evidence against the independent noise
assumption. This finding is quite robust to the choice of sampling
method (calendar-time or tick-time) and the type of price data
(transaction prices or quotation prices)’’.1
Another generalization concerns themagnitude of theMSnoise.

All of the papers above, like most of related literature, assume
that the variance of the MS noise is constant and does not change
depending on the time interval between trades.We call this a large
noise assumption. We explicitly model the magnitude of the MS
noise via a parameter α, where the α = 0 case corresponds to
the benchmark case of large noise. We allow also α > 0 in which
case the noise is ‘‘small’’ and specifically the variance of the noise
shrinks to zero with the sample size n. The rate of convergence
of our estimator depends on the magnitude of the noise, and can
be from n−1/6 to n−1/3, where n−1/6 is the rate of convergence
corresponding to the ‘‘big’’ noise case when α = 0.
How could the size of the noise ‘‘depend’’ on the sample size?

We give a fuller discussion of this issue below, but we note here
two arguments. First, there is a negative relationship between
the bid-ask spread (an important component of the MS noise
for transaction data) and a number of (other) liquidity measures,
including number of transactions during the day. This negative
relationship is a stylized fact from the market microstructure
literature. See, for example, Copeland andGalai (1983) andMcInish
and Wood (1992). Also, Awartani et al. (2004) write that ‘‘an
alternative model of economic interest [to the standard additive
noise model] would be one in which the microstructure noise
variance is positively correlated with the time interval’’. This is in
principle a testable hypothesis. UsingDow Jones Industrial Average
data, the authors test for and reject the hypothesis of constant
variance of the MS noise across frequencies.
The third feature of our model is that we allow the MS noise to

exhibit diurnal heteroscedasticity. This ismotivated by the stylized
fact in market microstructure literature that intradaily spreads
and intradaily stock price volatility are described typically by a
U-shape (or reverse J-shape). See Andersen and Bollerslev (1997),
Gerety and Mulherin (1994), Harris (1986), Kleidon and Werner
(1996), Lockwood and Linn (1990), and McInish andWood (1992).
Allowing for diurnal heteroscedasticity in our model has the effect
that the original TSRV estimator may not be consistent because
of end effects. In some cases, instead of estimating the quadratic
variation, it would be estimating some function of the noise. We
propose a modification of the TSRV estimator that is consistent,
without introducing new parameters to be chosen. Our model is
not meant to be definitive and can be generalized in a number of
ways.
The structure of the paper is as follows. Section 2 introduces

the model. Section 3 describes the estimator. Section 4 gives the
main result and the intuition behind it. Section 5 investigates

1 By ‘‘independent noise’’ Hansen and Lunde (2006) mean the combination of
the i.i.d. assumption and the assumption that the noise is independent from the
latent price. Our paper proposes to relax the second assumption. As to the first
assumption, we do not allow for serial correlation in the noise. At the same time, we
only impose approximate stationarity compared to Hansen and Lunde (2006) since
we allow for intraday heteroscedasticity of the noise.
the numerical properties of the estimator in a set of simulation
experiments. Section 6 illustrates the ideaswith an empirical study
of IBM transaction prices. Section 7 concludes. We use H⇒ to
denote convergence in distribution.

2. The model

Suppose that the latent (log) price process {Xt , t ∈ [0, T ]}
is a Brownian semimartingale solving the stochastic differential
equation

dXt = µtdt + σtdWt , (1)

where Wt is standard Brownian motion, µt is a locally bounded
predictable drift function, and σt a càdlàg volatility function; both
are independent of the process {Wt , t ∈ [0, T ]}. The (no leverage)
assumption of {σt , µt , t ∈ [0, T ]} being independent of {Wt , t ∈
[0, T ]}, though reasonable for exchange rate data, is unrealistic
for stock price data. However, it is frequently used and makes the
theoretical analysis more tractable. The simulation results suggest
that this assumption does not change the result. Furthermore, in
many other contexts the presence of leverage does not affect the
limiting distributions, see Barndorff-Nielsen and Shephard (2002).
The additive noisemodel says that the noisy price Y is observed

at times t1, . . . , tn on some fixed domain [0, T ]

Yti = Xti + uti , (2)

where uti is a random variable representing measurement error.
Without loss of much generality we are going to restrict attention
to the case of equidistant observations with T = 1. This type
of model was first introduced by Zhou (1996) who assumed that
uti is i.i.d. over i and independent of {Xt , t ∈ [0, 1]}. In this case
the signal to noise ratio for returns decreases with sample size,
i.e., var(∆Xti)/var(∆uti) → 0 as n → ∞, and at a specific
rate such that limn→∞ nvar(∆Xti)/var(∆uti) < ∞, which implies
inconsistency of realized volatility. We are going to modify the
properties of the process {uti} and its relation to {Xt , t ∈ [0, 1]}.
We would like to capture the idea that the measurement error

can be small. This can be addressed by adopting amodel uti = σεεti ,
where εti is an i.i.d. sequencewithmean zero and variance one, and
σε is a parameter such thatσε → 0.Many authors have found small
σε in practice. As usual one wants to make inferences about data
drawn from the true probability measure of the data where both n
is finite and σε > 0 by working with a limiting case that is more
tractable. In this case there are a variety of limits that one could
take. Bandi and Russell (2006a) for example calculate the exact
MSE of the statistic of interest, and then in Eq. (24) implicitly take
σε → 0 followed by n→∞. We instead take the sound and well
established practice in econometrics of taking pathwise limits, that
is we let σε = σε(n) and then let n→∞. Such a limit with ‘‘small’’
noise has been used before to derive Edgeworth approximations
(Zhang et al., 2005b), to calculate optimal sampling frequency of
inconsistent estimator for QVx (Zhang et al., 2005a, Eq. (53)), to
estimate QVx consistently when X follows a pure jump process and
Y is observed fully and continuously Large (2007), and to estimate
QVx consistently in a pure rounding model (Li and Mykland, 2006;
Rosenbaum, 2007). An example from MS modelling literature in
microeconomics is Back and Baruch (2004) who show the link
between the two key papers in asymmetric informationmodelling,
Glosten and Milgrom (1985) and Kyle (1985) using a limit with
small noise. In particular, they consider a limit of Glosten and
Milgrom (1985) as the arrival rate of trades explodes (so the
number of trades in any interval goes to infinity) and order size
(and hence incremental information per trade) goes to zero, thus
reaching the Kyle (1985) model as a limit. We are also mindful not
to preclude the case where σε(n) is ‘‘large’’ i.e., (in our framework)
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does not vanish with n, and our parameterization below allows us
to do that.
We next present our model. We assume that

uti = vti + εti (3)

vti = δγn
(
Wti −Wti−1

)
εti = m (ti)+ n

−α/2ω (ti) εti , α ∈ [0, 1/2)

with εti i.i.d. mean zero and variance one and independent of the
Gaussian process {Wt , t ∈ [0, 1]} with E|εti |

4+η < ∞ for some
η > 0. The functions m and ω are differentiable, nonstochastic
functions of time. They are unknown as are the constants δ and α.
The usual benchmark measurement error model with noise being
i.i.d. and independent from the latent price has α = 0, γn = 0 and
ω(.) and m(.) constant (see, e.g., Barndorff-Nielsen and Shephard
(2002), Zhang et al. (2005a) and Bandi and Russell (2006b)).
The process for the latent log-price is motivated by the

fundamental theory of asset prices, which states that, in a
frictionless market, log-prices must obey a semi-martingale; we
are specializing to the Brownian semimartingale case (1).Wewant
to model log-prices at very high frequency where frictions are
important and observed prices do not follow a semimartingale.
One way of partly reconciling the evidence in volatility signature
plots of the price behavior in very high and moderate frequencies,
is to assume that observed prices can be decomposed as in (2).
The first component X is a semi-martingale with finite quadratic
variation, while the second component u is not a semi-martingale
and has infinite quadratic variation. In particular, the increments in
u are of larger magnitude than that of X , and this difference is the
key in identifying the quadratic variation of X . We split the noise
component u into an independent term ε that has been considered
in the literature, and a 1-dependent endogenous part v, which
is correlated with X due to being driven by the same Brownian
motion. At the same time, v preserves the features of not being a
semi-martingale and having infinite quadratic variation, the main
motivation of the way ε is modelled.
There are three key parts to ourmodel: the correlation between

u and X, the relative magnitudes of u and X , and the heterogeneity
of u. We have E[uti ] = m(ti) and var[uti ] = δ2γ 2n (ti − ti−1) +
2n−ασ 2ε (i/n). To have the variance of both terms in u equal, we
set γ 2n = n1−α . This seems like a reasonable restriction if both
components are generated by the same mechanism. In this case,
both of the measurement error terms are Op(n−α). In our model
the signal to noise ratio of returns varies with sample size in a way
depending on α so that only limn→∞ n1−αvar(∆Xti)/var(∆uti) <
∞. We exploit the fact that for consistency of the TSRV estimator,
it is enough to assume that noise increments are of larger order
of magnitude than the latent returns, and the usual stronger
assumption limn→∞ nvar(∆Xti)/var(∆uti) <∞ is not necessary.
The process εti is a special case of the more general class of lo-

cally stationary processes of Dahlhaus (1997). The generalization
of allowing time varying mean and variance in the measurement
error, allows one to capture diurnal variation in the measurement
error process, which is likely to exist in calendar time. Neverthe-
less, the measurement error in prices is approximately stationary
under our conditions, which seems reasonable.
The term v in u induces a correlation between latent returns

and the change in the measurement error, which can be of either
sign depending on δ. Correlation between u and X is plausible due
to rounding effects, price stickiness, asymmetric information, or
other reasons (Bandi and Russell, 2006c; Hansen and Lunde, 2006;
Diebold, 2006).2 In the special case that σt = σ andω (ti) = ω, we

2 In a recent survey of measurement error in microeconometrics models, Bound
et al. (2001) emphasize ‘mean-reverting’ measurement error that is correlatedwith
the signal.
find

corr(∆Xti ,∆uti) '
δ√

[2δ2 + 2ω2]
.

In this case, the range of correlation is limited, although it is quite
wide — one can obtain up to a correlation of±1/

√
2 depending on

the relative magnitudes of δ, ω.
An alternative model for endogenous noise has been developed

by Barndorff-Nielsen et al. (forthcoming). In our notation, they
have the endogenous noise part such that var(vti) = O (1/n),
and an i.i.d., independent from X part with var(εti) = O (1). They
conclude robustness of their estimator to this type of endogeneity,
with no change to the first order asymptotic properties compared
to the case where vti = 0.
The focus of this paper is on estimating increments in quadratic

variation of the latent price process,3 but estimation of parameters
of the MS noise in our model is also of interest. We acknowledge
that not all the parameters of our model are identifiable. In
particular, the endogeneity parametermay not be identified unless
one knows something about the distribution of ε and in particular
that it is not Gaussian.4 However, other parameters are identified.
In Linton and Kalnina (2007) we provided a consistent estimator
of α, see also Section 6 here for empirical implementation and
discussion. Estimating the function ω (τ) would allow us to
measure the diurnal variation of the MS noise. In the benchmark
measurement error model this is a constant ω (τ) ≡ ω that can
be estimated consistently by

∑n−1
i=1

(
Yti+1 − Yti

)2
/2n (Bandi and

Russell, 2006b; Barndorff-Nielsen et al., forthcoming; Zhang et al.,
2005a). In our model, instead of n−1, the appropriate scaling is
nα−1. Such an estimatorwould converge to δ2+

∫
ω2 (u) du. Hence,

this estimator would converge asymptotically to the integrated
variance of the MS noise. Following Kristensen (forthcoming), in
the special case δ = 0, we could also estimate ω (·) at some fixed
point τ using kernel smoothing,

ω̂2 (τ ) =
1

2n1−α

n∑
i=1
Kh (ti−1 − τ)

(
∆Yti−1

)2
n∑
i=1
Kh (ti−1 − τ) (ti − ti−1)

.

When the observations are equidistant, this simplifies to ω̂2 (τ ) =∑n
i=1 Kh (ti−1 − τ)

(
∆Yti−1

)2
/2n−α . In the above, h is a bandwidth

that tends to zero asymptotically and Kh(.) = K(./h)/h, where
K(.) is a kernel function satisfying some regularity conditions. If
we also allow for endogeneity (δ 6= 0), ω̂2 (τ ) estimates ω2 (τ )
plus a constant, and so we still see the pattern of diurnal variation.
See Section 6 for implementation.

3 There is a question about whether one should care about the latent price or the
actual price. This has been raised elsewhere, see Zhang et al. (2005a). We stick with
the usual practice here, acknowledging that the presence of correlation between
the noise and efficient price makes this even more debatable, (Aït-Sahalia et al.,
2006b). Also, note that we are following the literature and estimating the quadratic
variation of the latent log-price and not the latent price.
4 Suppose that Xi+1 = Xi + (σ/

√
n)zi+1 and Yi = Xi + ρzi + σεεi , where zi

is standard normal and εi is i.i.d. with mean zero and variance one. Then ri+1 =
Yi+1−Yi =

(
σ
√
n + ρ

)
zi+1−ρzi+σεεi+1−σεεi .We have var[ri+1] = 2

(
ρ2 + σ 2ε

)
+

2ρσ
√
n +

σ 2

n , cov[ri+1, ri] = −
(
ρ2 + σ 2ε

)
−

ρσ
√
n , and cov[ri+j, ri] = 0, j > 1. Therefore,

from the covariogramwe obtain σ 2 = n(var[ri+1] + 2cov[ri+1, ri]) but we can only
identify ρ2 + σ 2ε not the two quantities separately. There are just two equations in
two unknowns and if εi is also Gaussian, then there is no more information. If there
is a non-Gaussian distribution one can identify ρ using parametric restrictions. This
is similar to the classical measurement error problem, (Maddala, 1977, p 296).
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3. Estimation

We suppose that the parameter of interest is the quadratic
variation of X on [0, 1], denoted QVX =

∫ 1
0 σ

2
t dt . Let

[Y , Y ]n =
n−1∑
i=1

(
Yti+1 − Yti

)2
be the realized variation (often called realized volatility) of Y , and
introduce a modified version of it (jittered RV) as follows,

[Y , Y ]{n} =
1
2

(
n−K∑
i=1

(
Yti+1 − Yti

)2
+

n−1∑
i=K

(
Yti+1 − Yti

)2)
. (4)

This modification is useful for controlling the end effects that arise
due to heteroscedasticity.
Our estimator of QVX makes use of the same principles as the

TSRV estimator in Zhang et al. (2005a).We split the original sample
of size n into K subsamples, with the jth subsample containing nj
observations. Introduce a constant β and c such that K = cnβ . The
dependence of K on n is suppressed in the sequel. For consistency
we will need β > 1/2 − α. The optimal choice of β is discussed
in the next section. By setting α = 0, we get the condition for
consistency in Zhang et al. (2005a), that β > 1/2.5
Let [Y , Y ]nj denote the jth subsample estimator based on a K -

spaced subsample of size nj,

[Y , Y ]nj =
nj−1∑
i=1

(
YtiK+j − Yt(i−1)K+j

)2
, j = 1, . . . , K ,

and let

[Y , Y ]avg =
1
K

K∑
j=1

[Y , Y ]nj

be the averaged subsample estimator. To simplify the notation, we
assume that n is divisible by K and hence the number of data points
is the same across subsamples, n1 = n2 = · · · = nK = n/K . Let
n = n/K .
Define the adjusted TSRV estimator (jittered TSRV) as

Q̂V X = [Y , Y ]avg −
(
n
n

)
[Y , Y ]{n} . (5)

Compared to the TSRV estimator, this estimator does not involve
any new parameters that would have to be chosen by the
econometrician, so it is as easy to implement. The need to adjust
the TSRV estimator arises from the fact that under our assumptions
TSRV is not always consistent. The problem arises due to end-
of-sample effects induced by heteroscedastic noise. For a simple
example where the TSRV estimator is inconsistent, let us simplify
the model to the framework of Zhang et al. (2005a), and introduce
only heteroscedasticity in the noise, the exact form of which is
to be chosen below. Let us evaluate the asymptotic bias of TSRV
estimator.6

n1/6E
{
Q̂V

TSRV
X − QVX

}
= n1/6

{
E[u, u]avg −

n
n
E [u, u]n

}
+ o (1)

= c−1n−1/2
n−K∑
i=1

(
ω2ti+K ε

2
ti+K + ω

2
tiε
2
ti

)

5 This condition is implicit in Zhang et al. (2005a) in Theorem 1 (page 1400)
where the rate of convergence is

√
K/n = c

√
n2β−1 .

6 For the reader to be able to follow our calculations in the next few lines, she
should use the exact definition of n, n = n−K+1

K that Zhang et al. (2005a) use. For all
other purposes differences between our and their definition are negligible.
−
(
c−1n−1/2 − n−5/6

) n−1∑
i=1

(
ω2ti+1ε

2
ti+1 + ω

2
tiε
2
ti

)
+ o (1)

= n−5/6
n−1∑
i=1

(
ω2ti+1ε

2
ti+1 + ω

2
tiε
2
ti

)
− c−1n−1/2

{
K∑
i=2

ω2tiε
2
ti +

n−1∑
i=n−K+1

ω2tiε
2
ti

}
+ o (1) .

We see that the first and last K returns that are ‘‘ignored’’ by
averaged subsampled realized volatility [Y , Y ]avg ∼ [u, u]avg have
to be off-set by a fraction of the noise of all returns, coming from
[Y , Y ]n ∼ [u, u]n. For this bias correction to work, the volatility
of the microstructure noise in the morning and afternoon has to
be ‘‘close’’ to the volatility of the noise during the day. A simple
counter-example that is motivated by our empirical Section 6.3 is
a parabola on [0, 1],ω2 (i/n) = a+

( i
n − 0.5

)2
/100,where a is any

constant. In this case simple calculations give that TSRV estimator
is inconsistent,

n1/6E(Q̂V
TSRV
X − QVX ) = −

1
300
n1/6 + o (1) .

By contrast, jittered RV , [Y , Y ]{n}, mimics the structure of the
volatility component that needs to be bias corrected for in [Y , Y ]avg,
which is

1
√
n

n−K∑
i=1

(
ω2ti+K ε

2
ti+K + ω

2
tiε
2
ti

)
and so delivers a consistent estimator Q̂V X .
We remark that (5) is an additive bias correction and there is a

nonzero probability that Q̂V X < 0. One can ensure positivity by
replacing Q̂V X by max{Q̂V X , 0}, but this is not very satisfactory.
Note, however, that we usually have Q̂V X > Q̂V

TSRV
X (except for

when first and last subsamples have all flat prices and so Q̂V X =
Q̂V

TSRV
X ), so the probability that Q̂V X < 0 is lower than the

probability that Q̂V
TSRV
X < 0.

4. Asymptotic properties

The expansion for [Y , Y ]avg and [Y , Y ]n both contain terms due
to the correlation between the measurement error and the latent
returns. The main issues can be illustrated using the expansion of
[Y , Y ]avg, conditional on the path of σt :

[Y , Y ]avg = QVX︸︷︷︸
(a)

+2
δγn

K

∫ 1

0
σtdt︸ ︷︷ ︸

(b)

+ E [u, u]avg︸ ︷︷ ︸
(c)

+O

n−1/2︸ ︷︷ ︸
(d)

+

√
n
Kn2α︸ ︷︷ ︸
(e)

 Z, (6)

where Z ∼ N (0, 1), while the terms in curly braces are as follows:
(a) the probability limit of [X, X]avg, which we aim to estimate;
(b) the bias due to correlation between the latent returns and
the measurement error; (c) the bias due to measurement error;
(d) the variance due to discretization; (e) the variance due to
measurement error.
Shouldwe observe the latent pricewithoutmeasurement error,

(a) and (d) would be the only terms. In this case, of course, it
is better to use [X, X]n, since that has an error of smaller order
n−1/2. In the presence of the measurement error, however, both
[Y , Y ]avg and [Y , Y ]n are badly biased, the bias arising both from
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correlation between the latent returns and themeasurement error,
and from the variance of the measurement error. The largest term
is (c), which satisfies

E [u, u]avg = 2nn−α
(∫ 1

0
ω2 (u) du+ δ2

)
+ O

(
n−α + n−1

)
= O

(
nn−α

)
,

i.e., it is of order nn−α . So without further modifications, this
is what [Y , Y ]avg would be estimating. Should we be able to
correct that, the next term would be 2(δγn/K)

∫
σtdt arising

from E [X, u]avg. This second term is zero, however, if there is no
correlation between the latent price and theMS noise, i.e., if δ = 0.
Interestingly when we use the TSRV estimator for bias correction
of E [u, u]avg, we also cancel this second term.
The asymptotic distribution of our estimator arises as a

combination of two effects, measurement error and discretization
effect. After correcting for the bias due to the measurement error
(terms like b and c in Eq. (6)), we still have the variation due to
the measurement error (term e in Eq. (6)). We can see that its
contribution to the asymptotic distribution by observing how the
estimator converges to the realized variance of the latent price X ,√
Kn2α

n

(
Q̂V X − [X, X]avg

)
H⇒ N

(
0, 8δ4 + 16δ2

∫ 1

0
ω2 (u) du+ 8

∫ 1

0
ω4 (u) du

)
, (7)

The rate of convergence arises from var[u, u]avg = O
(
n/Kn2α

)
.

Both parts of the noise u, which are v and ε, contribute to the
asymptotic variance. The first part of the asymptotic variance
roughly arises fromvar[v, v], the secondpart fromvar[v, ε] (which
is nonzero even though the correlation between both terms is
zero), and the third part from var[ε, ε]. If the measurement error
is uncorrelated with the latent price, the first two terms disappear.
Shouldwe observe the latent pricewithout any error, wewould

still not know its quadratic variation due to observing the latent
price only at discrete time intervals. This is another source of
estimation error. From Theorem 3 in Zhang et al. (2005a) we have

n1/2
(
[X, X]avg − QVX

)
H⇒ MN

(
0,
4
3

∫ 1

0
σ 4t dt

)
, (8)

where MN(0, S) denotes a mixed normal distribution with
conditional variance S independent of the underlying normal
random variable.
The final result is a combination of the two results (7) and (8),

as well as the fact that they are asymptotically independent. The
fastest rate of convergence is achieved by choosing K so that the
variance from the discretization is of the sameorder as the variance
arising from the MS noise, so set n−1/2 =

√
n/Kn2α. The resulting

optimal magnitude of K is such that β = 2 (1− α) /3. The rate of
convergence with this rule is n−1/2 = n−1/6−α/3. The slowest rate
of convergence is n−1/6, and it corresponds to large MS noise case,
α = 0. The fastest rate of convergence is n−1/3, which corresponds
to α = 1/2 case. If we pick a larger β (and hence more subsamples
K ) than optimal, the rate of convergence in (7) increases, and
the rate in (8) decreases and so dominates the final convergence
result. In this case the final convergence is slower and only the first
term due to discretization appears in the asymptotic variance (see
(9)). Conversely, if we pick a smaller β (and hence K ) than optimal,
we get a slower rate of convergence and only the second term in
the asymptotic variance (‘‘measurement error’’ in (9)), which is due
to the MS noise.
We obtain the asymptotic distribution of Q̂V X in the following

theorem.
Theorem. Suppose that {Xt , t ∈ [0, 1]} is a Brownian semimartin-
gale satisfying (1). Suppose that {µt , t ∈ [0, 1]} and {σt , t ∈ [0, 1]}
are measurable and càdlàg processes, independent of the process
{Wt , t ∈ [0, 1]}. Suppose further that the observed price arises as in
(2) with α ∈ [0, 1/2). Let the measurement error uti be generated
by (3), with εti i.i.d. mean zero and variance one and independent of
the Gaussian process {Wt , t ∈ [0, 1]} with E|εti |

4+η < ∞ for some
η > 0. Then,

V (σ )−1/2n1/2
(
Q̂V X − QVX

)
H⇒ N (0, 1) ,

V (σ ) =
4
3

∫ 1

0
σ 4t dt︸ ︷︷ ︸

discretization

+ c−3
(
8δ4 + 16δ2

∫ 1

0
ω2 (u) du+ 8

∫ 1

0
ω4 (u) du

)
︸ ︷︷ ︸

measurement error
> 0 a.s. (9)

Remarks.
1. The quantity V (σ ) collapses to the expression in Zhang et al.

(2005a) when ω(.) is constant.
2. If one could find a consistent estimator V̂ (σ ) such that V̂ (σ )−

V (σ ) = o(1) a.s., then the above theorem can be strengthened
along the lines of Barndorff-Nielsen and Shephard to a feasible CLT,
i.e., V̂ (σ )−1/2n1/2(Q̂V X − QVX ) H⇒ N (0, 1) from which one could
obtain confidence intervals for QVX . Without assuming δ = 0 or
constantω(.), the procedure of Zhang et al. (2005a), p. 1404, would
work to estimate V (σ ).
3. The main statement of the theorem can also be written as

n1/6+α/3
(
Q̂V X − QVX

)
H⇒ MN (0, cV (σ )) ,

where V (σ ) = V1(σ )+ c−3V2, with V1(σ ) being the discretization
error, while MN denotes a mixed normal distribution with
conditional variance cV (σ ) independent of the underlying normal
random variable. We can use this to find the value of c that
would minimize the conditional asymptotic variance, copt(σ ) =
(2V2/V1(σ ))1/3, provided V1(σ ) > 0, resulting in the asymptotic
conditional variance (3/22/3)V 1/32 V

2/3
1 (σ ). If one has consistent

estimators V̂j(σ ) − Vj(σ ) = o(1) a.s., j = 1, 2, then ĉopt(σ ) =
(2V̂2(σ )/V̂1(σ ))1/3 is consistent in the sense that ĉopt(σ ) −
copt(σ ) = o(1) a.s.
4. Suppose now that the measurement error is smaller than

above and we have α ∈ [1/2, 1) instead of α ∈ [0, 1/2). Then,
there is a consistency condition β > 1/3 that becomes binding
and therefore optimalβ allows themeasurement error to converge
faster than the discretization error. For β = 1/3 + ∆ (where ∆
small and positive) the rate of convergence is n−1/2 = n−(1−β)/2 =
n−1/3+∆/2. Note that this is exactly the rate that occurs when there
is no measurement error at all. So choose β ∈ (1/3, 1). The
conclusion of the theorem becomes

V (σ )−1/2n(1−β)/2
(
Q̂V X − QVX

)
H⇒ N (0, 1) ,

where V1(σ ) = (4/3)
∫
σ 4t dt . This can be shown by minor

adjustments to the proofs.
5.What ifα ≥ 1? Thismeans that [u, u] is of the sameor smaller

magnitude than [X, X]. In the caseα = 1 they are of the same order
and identification breaks down. When α > 1, realized volatility of
observed prices is a consistent estimator of quadratic variation of
latent prices, as measurement error is of smaller order. This is an
artificial case and does not seem to appear in the real data.
How can we put this analysis in context? A useful benchmark

for evaluation of the asymptotic properties of nonparametric
estimators is the performance of parametric estimators. Gloter
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and Jacod (2001) allow for the dependence of the variance of
i.i.d. Gaussian measurement error ρn on n and establish the Local
Asymptotic Normality (LAN) property of the likelihood, which is a
precondition to asymptotic optimality of the MLE. For the special
case ρn = ρ they obtain a convergence rate n−1/4, thus allowing
one to conclude that theMSRV and realized kernels can achieve the
fastest possible rate. They also show that the rate of convergence
is n−1/2 if ρn goes to zero sufficiently fast, which is the rate when
there is no measurement error at all. Our estimator has a rate
n−1/3+∆when there is nomeasurement error,which is also the rate
of convergence when the noise is sufficiently small. Also, Gloter
and Jacod have that for ‘‘large’’ noise, the rate of convergence
depends on the magnitude of the noise, similarly to our results.
The rate of convergence and the threshold for the magnitude of
the variance of the noise is different, though.

5. Simulation study

In this section we explore the behavior of the estimator (5) in
finite samples. We simulate the Heston (1993) model:

dXt = (µt − vt/2) dt + σtdWt
dvt = κ (θ − vt) dt + γ v

1/2
t dBt ,

where vt = σ 2t , and Wt , Bt are independent standard Brownian
motions.
For the benchmark model, we take the parameters of Zhang

et al. (2005a): µ = 0.05, κ = 5, θ = 0.04, γ = 0.5.
We set the length of the sample path to 23,400 corresponding
to the number of seconds in a business day, the time between
observations corresponding to one second when a year is one unit,
and the number of replications to be 100,000.7 We set α = 0.
We choose the values of ω and δ so as to have a homoscedastic
measurement error with variance equal to 0.00052 (again from
Zhang et al. (2005a)), and correlation between the latent returns
and the measurement error equal to −0.1. For this we use the
identity

corr(∆Xti ,∆uti) =
E (σ )√
2E
(
σ 2
) δ
√
δ2 + ω2

and the fact that for our volatility we have E (σ ) = θ, var (σ ) =
θγ 2/2κ. We set β = 2 (1− α) /3. Fig. 1 shows the common
volatility path for all simulations.
First, we construct different models to see the effect of varying

α and the number of observations within a day. We take the
values of δ and ω that arise from the benchmark model, and
then do simulations for the following combinations of α and n.
When interpreting the results, we should also take into account
that both of these parameters change the size of the variance
of the measurement error. We measure the proximity of the
finite sample distribution to the asymptotic distribution by the
percentage errors of the interquartile range of n1/2(Q̂V X − QVX )
compared to 1.3

√
V , the value predicted by the distribution theory.

We note that this is not the same as the MSE or variance of the
estimator: it can be that a very efficient estimator can be poorly
approximated by its limiting distribution and vice versa. This

7 Note that in the theoretical part of the paper we had for brevity taken interval
[0, 1]. For the simulations we need the interval [0, 1/250]. Suppose the parameter of
interest is

∫ τ
0 σ

2
t dt , the quadratic variation of X on [0, τ ]. In that case the asymptotic

conditional variance of the theorem becomes

V (σ ) =
4
3
τ

∫ τ

0
σ 4t dt + c

−3
(
8τ 2δ4 + 16δ2

∫ τ

0
ω2 (u) du+ 8τ−1

∫ τ

0
ω4 (u) du

)
.

This follows by simple adjustments in the proofs. We take τ = 1/250.
Fig. 1. The common volatility path for all simulations.

Table 1
Choices of K

(2V2/V1)1/3n
2
3 (1−α) Asymptotically optimal rate and c Tables 2 and 3

n
2
3 (1−α) Variation of above Tables 4 and 5
n
2
3 Variation of above Table 6(
3RV2
2RQ

)1/3
n1/3 Bandi and Russell (2006a, Eq. 24) Table 7

measure is easiest to interpret if we work with a fixed variance,
i.e., when we condition on the volatility path. Hence, we simulate
the volatility path for the largest number of observations, 23,400,
andperformall simulations using this one sample path of volatility.
The last parameter to choose is K , the number of subsamples.
This is the only parameter that an econometrician has to choose
in practice. We examine four different values as in Table 1 (the
expressions are all rounded to the closest integer):
Table 2 contains the interquartile range errors (IQRs), in per

cent, with the asymptotically optimal rate and constant (in terms
of minimizing asymptotic mean squared error) for K . That is, we
use K = (2V2/V1)1/3n2(1−α)/3, rounded to the nearest integer,
where V1 and V2 are discretization and measurement errors from
(9). Table 3 contains the values of K .
First of all, for small values of α, the percentage errors decrease

with n as predicted by the theory. However, we do see some large
errors, and from the values of K in Table 3 we can guess this is due
to the asymptotically optimal rule selecting very low copt . In fact,
for the volatility path used here, copt = (2V2/V1)1/3 = 0.0242.
Hence, another experiment we consider is an arbitrary choice c =
1. The next two tables (Tables 4 and 5) contain the percentage
errors and values of K that result from using K = n2(1−α)/3.
The performance of this choice is much better. We can see from

Table 4 that for small values of α, the asymptotic approximation
improves with sample size. The sign of the error changes as α
increases for given n, meaning that the actual IQR is below that
predicted by the asymptotic distribution for small α and small n
but this changes into the actual IQR being above the asymptotic
prediction.
Another variant that does not include the unobservableαwould

be to use K = n2/3.
Finally, we consider a method proposed by Bandi and Russell

(2006a), which requires some discussion. They establish the
exact mean squared error of TSRV under the assumptions of the
independent additive noise model, and in addition they assume
asymptotically constant volatility, i.e.,

∫ ti
ti−1
σ 2u du =

∫ 1
0 σ

2
u du/n

for each i, as well as E
(
ε4
)
= 3E2

(
ε2
)
. Two assumptions are

not satisfied in our simulation setup, the independence between



I. Kalnina, O. Linton / Journal of Econometrics 147 (2008) 47–59 53
Table 2
IQR percentage error with K = (2V2/V1)1/3n

2
3 (1−α)

n α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

195 96 186 145 120 145 114 95 78 65 54 N/A
390 94 135 110 200 156 128 143 111 89 71 59
780 67 90 108 137 107 181 151 162 119 100 76
1560 55 74 67 86 94 125 205 161 119 125 92
4680 48 47 56 58 74 96 99 117 201 144 151
5850 44 51 57 57 66 81 76 135 98 160 163
7800 45 46 52 53 68 70 90 94 109 175 134
11700 40 44 45 52 53 59 81 78 141 208 148
23400 36 40 43 46 49 58 61 79 106 123 196
Table 3
K = (2V2/V1)1/3n

2
3 (1−α)

n α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

195 3 2 2 2 1 1 1 1 1 1 0
390 4 3 3 2 2 2 1 1 1 1 1
780 7 5 4 3 3 2 2 1 1 1 1
1560 11 8 7 5 4 3 2 2 2 1 1
4680 22 17 13 10 7 5 4 3 2 2 1
5850 26 19 14 11 8 6 5 3 3 2 1
7800 31 23 17 13 9 7 5 4 3 2 2
11700 41 30 22 16 12 9 6 5 3 2 2
23400 65 47 33 24 17 12 9 6 4 3 2
Table 4
IQR percentage error with K = n

2
3 (1−α)

n α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

195 −21 −16 −13 −7 −7 −3 −1 4 8 13 13
390 −15 −12 −7 −3 −3 1 3 6 7 12 14
780 −13 −11 −4 −2 0 0 4 5 6 11 14
1560 −9 −7 −2 −1 1 3 5 7 8 13 12
4680 −5 −3 −1 −2 1 0 3 5 6 7 11
5850 −4 −3 1 3 5 5 2 4 8 8 8
7800 −2 −2 0 1 3 2 5 3 6 8 10
11700 −3 0 0 2 2 5 4 2 6 3 8
23400 −2 1 2 1 3 4 2 6 6 6 8
Table 5
K = n

2
3 (1−α)

n α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

195 34 28 24 20 17 14 12 10 8 7 6
390 53 44 36 29 24 20 16 13 11 9 7
780 85 68 54 44 35 28 22 18 14 11 9
1560 135 105 82 64 50 39 31 24 19 15 12
4680 280 211 159 120 91 68 52 39 29 22 17
5850 325 243 182 136 102 76 57 43 32 24 18
7800 393 292 216 161 119 88 66 49 36 27 20
11700 515 377 276 202 148 108 79 58 42 31 23
23400 818 585 418 299 214 153 109 78 56 40 29
the noise and the latent returns, as well as the assumption∫ ti
ti−1
σ 2u du =

∫ 1
0 σ

2
u du/n for each i (see Fig. 1). Therefore, this

should be considered as another ad hoc selection method in our
simulation setup. We note that this bandwidth choice results in
an inconsistent estimator in our framework and in the framework
of Zhang et al. (2005a) (i.e., when α = 0, β > 1/2 is
required for consistency). Note that the choice K BR was derived
for Q̂V

TSRV
without jittering, but this end-of-sample adjustment,

though theoretically crucial, is negligible in simulations and, as we
will see in the next section, also in real data. Table 7 contains the
IQR percentage errors and values of K that result from using K BR =
(
3RV 2/2RQ

)1/3 n1/3, where RV is the realized variance, RV =∑
(∆Ylow)2 and RQ is the realized quarticity, RQ = S

3

∑
(∆Ylow)4.

Here, Ylow is low frequency (15 min) returns, which gives S = 24
to be the number of low frequency observations during one day.
We see that the IQR errors of this choice get worse with sample

size for small α, which reflects the inconsistency predicted by the
theory. On the other hand the errors are small and improve with
n for large α, i.e., when the noise is small. The performance is
generally better than with asymptotically optimal K , except for
cases that have both large n and small α, including the case α = 0
usually considered in the literature. We notice that K BR rule gives
better results than the asymptotically optimal rulewhen it chooses
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Table 6
IQR percentage error with K = n

2
3

n α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 K

195 −23 −23 −24 −23 −23 −21 −23 −24 −23 −24 −23 34
390 −17 −19 −19 −17 −19 −20 −18 −16 −16 −18 −18 53
780 −14 −15 −12 −15 −14 −12 −15 −15 −16 −14 −13 85
1560 −12 −9 −10 −10 −12 −11 −11 −9 −11 −12 −9 135
4680 −7 −2 −7 −5 −5 −7 −6 −5 −5 −6 −5 280
5850 −6 −6 −6 −6 −6 −6 −5 −7 −6 −5 −4 325
7800 −5 −6 −4 −4 −3 −4 −5 −4 −5 −6 −5 393
11700 −2 −6 −3 −3 −3 −4 −2 −5 −6 −2 −3 515
23400 −2 −2 −3 −2 −1 −2 −1 −3 −4 −2 −4 818
Table 7

IQR percentage error with K BR = φ =
(
3RV2
2RQ

)1/3
n1/3

n α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 K BR

195 55 46 34 29 27 21 22 19 16 18 15 6
390 67 49 37 28 23 20 17 18 15 15 14 8
780 94 65 48 32 26 22 19 16 16 14 12 10
1560 124 81 54 36 27 24 15 14 14 13 13 13
4680 243 146 91 54 34 24 18 16 12 14 8 18
5850 263 155 92 53 35 24 18 11 11 11 12 20
7800 300 182 97 60 33 26 15 13 10 11 9 22
11700 381 223 125 68 39 24 17 11 12 9 8 25
23400 539 305 163 86 47 28 15 13 8 8 8 32
a larger K , which is in most cases, but not all. In comparison to
rules K = n2(1−α)/3 and K = n2/3 (Tables 4 and 6, respectively),
the performance of this choice is still disappointing, especially for
small α. We conclude that in this setting the K BR rule is not always
the best choice according to our criterion.
It has been noted elsewhere that the asymptotic approximation

can perform poorly, see Gonçalves andMeddahi (forthcoming) and
Zhang et al. (2005b).
From Tables 2, 4 and 6 we see that magnitude of noise does not

affect the quality of the asymptotic approximation. Although we
see the interquartile range error having some relationship with α
in Table 4 and especially Table 2, this is purely driven by changes
in K . This is evidenced by Table 6 where the rule for K does not
depend on α and the respective error is close to constant for the
same number of observations and different α. Another conclusion
here is that a good rule for K does not necessarily have to depend
on α, which is convenient for practical purposes.
In a second set of experiments we investigate the effect of

varying ω, which controls the variance of the second part of
the measurement error, for the largest sample size. Denoting by
ω2b the value of ω

2 in the benchmark model, we construct models
with ω2 = ω2b, 4ω

2
b, 8ω

2
b, 10ω

2
b, and 20ω

2
b . The corresponding

interquartile errors are 0.96%, 1.26%, 1.93%, 2.29%, and 4.64%.
In a third set of experiments we investigate the effect of varying

δ, which controls the size of the correlation of the latent returns
and measurement error. Denoting by δ2b the value of δ

2 in the
benchmarkmodel, we construct models with δ2 being from 0.01×
δ2 to 20 × δ2. The exact values of δ2, as well as the corresponding
correlation between returns and increments of the noise, and the
resulting interquartile errors are reported in Table 8. We can see
that when the number of observations is 23,400, there is no strong
effect from the correlation of the latent returns and measurement
error on the approximation of the asymptotic interquartile range
of the estimator.

6. Empirical analysis

To illustrate the above ideas, we perform a small empirical
analysis. We discuss estimation of α, ω(.), and the quadratic
Table 8
Effect of δ2 on the estimates Q̂V x

δ2 /δ2b corr(∆Xti ,∆uti ) IQR error

0.01 −0.0010 0.0133
0.05 −0.0051 0.0128
0.1 −0.0102 0.0049
0.25 −0.0254 0.0182
0.5 −0.0506 0.0037
1 −0.1000 0.0136
2 −0.1909 0.0100
4 −0.3280 0.0090
10 −0.4869 0.0130
20 −0.5351 0.0105

variation of the latent price. The endogeneity parameter δ is
unfortunately nonparametrically unidentified and so cannot be
estimated. Its sole purpose is in allowing for flexible size and sign
of endogeneity, with respect to which our estimator of quadratic
variation is robust.
Fig. 5 in the Appendix B shows the volatility signature of

the data we use, which is IBM transaction data, year 2005. The
plot indicates that market microstructure noise is prevalent at
the frequencies of 10–15 min and higher. Since the volatility
signature plot does not become negative, one cannot find evidence
of endogeneity using the method of HL (2006). As pointed out
already by HL (2006), this does not mean there is no endogeneity.

6.1. The data

We use IBM transactions data for the whole year 2005. We
employ the data cleaning procedure as in HL (2006), main paper
and rejoinder. First, we use transactions from NYSE exchange
only as this is the main exchange for IBM. Second, we use only
transactions from 9:30AM to 4:00PM. Third, for transactions with
the same time stamp, we use the average price. Fourth, we remove
outliers as follows. If the price is too much above the ask price or
too much below the bid, we remove it. Too high means more than
spread above the ask, and too low means more than spread below
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Fig. 2. Estimated α over a rolling window of 60 days (approx. 3 months). X axis
shows the date of the first day in the window.

the bid. Fifth, we remove days with less than 5 h of trading (there
were none). For discussion of the advantages of this procedure see
HL (2006). Themean number of transactions per day in our cleaned
data set is 4484 (for comparison, there are 4680 intervals of 5 s in
the 6.5 h between 9:30 and 16:00).

6.2. Estimation of α

The parameter that governs the magnitude of the microstruc-
ture noise, α, can be consistently estimated. Recall that the leading
term of realized volatility [Y , Y ]n is [u, u]n i.e.,

[Y , Y ]n =
n−1∑
i=1

(uti+1 − uti)
2
+ op(n1−α)

= n−α
n−1∑
i=1

(ωti+1εti+1 − ωtiεti + δ
√
n(Wti+1 −Wti))

2

+ op(n1−α)

= n1−αc + op(n1−α)

for some positive constant c. It follows that

log([Y , Y ]n/n) = −α log n+ log c + op(log n).

We therefore estimate α by

α̂ = −
log ([Y , Y ]n/n)
log(n)

, (10)

see Linton and Kalnina (2007).
Although this is a consistent estimator for α, it has a bias that

decays slowly. To reduce the bias, we estimate α over windows of
60 days instead of 1 day, i.e., we take our fixed interval [0, 1] to
represent 3 months instead of 1 day. Fig. 2 shows the estimates
over the whole year 2005 where we roll the 60 day window by
1 day. We see that α̂ varies between 0.64 and 0.7 with an average
value of 0.67.
Although this is a consistent estimator for α, it is not precise

enough to give a consistent estimator of nα . As a consequence,
this estimator cannot be used for consistent inference for Q̂V x.
In Linton and Kalnina (2007) we provide a sharper bias adjusted
version of α̂, α̂adj, but the adjusted estimator is not feasible as
it requires knowledge of ω (τ). This last parameter can only be
consistently estimated if α = 0 and δ = 0. The lack of precision
in α̂ also prevents us from developing a test of the null hypothesis
α = 0. Therefore, the deviations of α̂ we see in Fig. 2 provide only
a heuristic evidence that the true α is positive.
6.3. Estimation of Scedastic function ω(.)

Now we estimate the function ω (τ) that allows us to
measure the diurnal variation of the MS noise. In the benchmark
measurement error model this is a constant ω (τ) ≡ ω that can
be estimated consistently by

∑n−1
i=1

(
Yti+1 − Yti

)2
/2n (Bandi and

Russell, 2006c; Barndorff-Nielsen et al., forthcoming; Zhang et al.,
2005a). In the special case α = 0 and δ = 0 this estimator
would converge asymptotically to the integrated variance of the
MS noise,

∫
ω2 (τ ) dτ . We can estimate the function ω2 (.) at a

specific point τ using a simple generalization of the approach of
Kristensen (forthcoming) to the case with market microstructure
noise. For equidistant observations, the estimator is

ω̂2 (τ ) =

n∑
i=1
Kh (ti−1 − τ)

(
∆Yti−1

)2
2n−α

. (11)

We pick a random day, say 77th, which corresponds to 22nd
of April. Assume α = 0 and δ = 0 and note that if these
assumptions are not true, the level will be incorrect, while the
diurnal variation will still be correct. Fig. 3b shows the estimated
function ω̂2 (τ ) using calendar time with 30 s frequency. We see
that the variance of MS noise is far from being constant, and is
closer to U-shape. Higher ω̂2 (τ ) at the beginning of the day and
low values around 13:00 are displayed by virtually all days in 2005,
while higher values of ω̂2 (τ ) at the end of the day are less common.
Hence, overall, we confirm the findings of the empirical market
microstructure literature that the intraday patterns are of U or
reverse J shape (see references in the introduction).

6.4. Estimation of quadratic variation

Our theory predicts that original TSRV estimator is asymptot-
ically as good as our jittered version if intraday volatility pattern
is ‘‘close enough’’ to constant volatility. Visual inspection of the
estimated volatilities in the previous section suggest that there is
some deviation from constant volatility, so one might call for ad-
justment to the TSRV estimator. How important is this adjustment
in practice?
We check empirically the effect of jittering on daily point

estimates of quadratic variation using IBM data in 2005. Fig. 4a
shows a plot of relative differences

Q̂V X − Q̂V
TSRV
X

Q̂V
TSRV
X

for every day in 2005 where we use tick time sampling (with 1-
tick and K = n2/3). The plot for 5 min calendar time sampling
(CTS) is very similar. The mean of these relative differences over
all days is 0.0009. Fig. 4b shows means of this relative difference
for CTS, across different frequencies.8 We see that, on average, for
high frequencies, jittering makes very little difference. For lower
frequencies the change ismore visible. This arises from the fact that
the jittering changes the TSRV estimator on two subsamples only
(see Eq. (12)). The more subsamples there are, the less important
our adjustment (this can also be achieved for any fixed frequency
by using a larger number of subsamples than our choice K = n2/3).
Another important observation is that jittering always increases

the value of QV estimates, since we can write

Q̂V
TSRV
X = Q̂V X +

1
2

(
K−1∑
i=1

(
Yti+1 − Yti

)2
+

n∑
i=n−K+1

(
Yti+1 − Yti

)2)
> Q̂V X . (12)

8 This average excludes October 27. On this day our estimator, when calculated
on frequencies above 7 min, became several times bigger than TSRV estimator.
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(a) Squared returns. (b) Estimated function ω2(.).

Fig. 3. IBM transactions data, 22nd of April 2005.
(a) Daily differences, 1-tick sampling. (b) Average daily differences, CTS.

Fig. 4. What is the relative difference Q̂VX−Q̂V
TSRV
X

Q̂VTSRVX
from our adjustment to the TSRV estimator?
Themore there is variation in the beginning of the day and the end
of the day, the larger is the adjustment. This implies that jittering
partly alleviates the problem that the usual TSRV estimator can
sometimes become negative. With our data set, the only negative
value (though very small) we saw was on February 28 when we
calculated TSRV estimator with 10 min CTS frequency. The jittered
version was positive.
We conclude that for most applications our estimator is very

close to the TSRV estimator, and so for practical applications
plain TSRV estimator can be used, without adjustment for
heteroscedastic market microstructure noise. As a result, as far as
point estimates are concerned, the existing empirical studies of
TSRV estimator are still valid in our theoretical framework. See, for
example, investigations of forecasting performance in Aït-Sahalia
and Mancini (forthcoming), Andersen et al. (2006), Bandi et al.
(2007), and Ghysels and Sinko (2006).

7. Conclusions and extensions

In this paper we showed that the TSRV estimator is consistent
for the quadratic variation of the latent (log) price process when
themeasurement error is correlatedwith the latent price, although
some adjustment is necessary when the measurement error is
heteroscedastic. We also showed how the rate of convergence
of the estimator depends on the magnitude of the measurement
error.
Inference for TSRV estimator is robust to endogeneity of the
measurement error. Provided the suggested adjustment to the
estimator is implemented to preserve consistency, inference is also
robust to heteroscedasticity of the noise. However, since the rate
of convergence depends on the magnitude of the noise, inference
is not robust to possible deviations from assumptions about this
magnitude. We plan to investigate this question further.
Other examples where the inference question needs to be

solved include autocorrelation in measurement error (as in Aït-
Sahalia et al. (2006a)), or other generalizations to the independent
additive error model (Li and Mykland, 2007). Gonçalves and
Meddahi (forthcoming) have recently proposed a bootstrap
methodology for conducting inference under the assumption of
no noise and shown that it has good small sample performance
in their model. Zhang et al. (2005b) have developed Edgeworth
expansions for the TSRV estimator, and itwould be very interesting
to use this for analysis of inference using bootstrap. The results we
have presented may be generalized to cover MSRV estimators and
to allow for serial correlation in the error terms, although in both
cases the notation becomes very complicated.

Appendix A

We assume for simplicity that µ ≡ 0 in the sequel. Drift is not
important in high frequencies as it is of order dt , while the diffusion
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term is of order
√
dt (see, for example Aït-Sahalia (2006)).With the

assumptions of Theorem, the same method as in the proof can be
applied to the drift, yielding the conclusion that it is not important
statistically.
Proof of Theorem. We will rely on the first and second mo-
ment calculations of [X, u]{n} , [u, u]{n}, [X, u]avg, [u, u]avg, and
respective covariances. These can be found in the technical ap-
pendix, Kalnina and Linton (2007). From there, 2n1/2 [X, u]avg −
n3/2
n 2 [X, u]

{n}
= op(1) by Chebyshev’s inequality and similarly

n3/2
n [X, X]

{n}
= op(1). Also, we have E

(
[X, X]avg − QVX

)
=

o(n−1/2) from ZMA (2005) and E[n1/2 [u, u]avg − n3/2
n [u, u]

{n}
] =

o(1). Therefore,

n1/2
(
Q̂V X − QVX

)
= n1/2

(
[X, X]avg − E [X, X]avg + [u, u]avg

− E [u, u]avg −
1
K
[u, u]{n} +

1
K
E [u, u]{n}

)
+ op (1) .

We use Berk’s (1973) central limit theorem for m-dependent
variables with m = 1. Note that we can prove the CLT for the
special case α = 0 and convergence rate n1/6, then get the needed
result bymultiplying and dividing themain expression by nα/3. We
proceed in the case where all three terms contribute, which is the
case where K is chosen optimally to be K = O(n2/3). Also, we can
do all calculations, conditional on σ = {σt , t ∈ [0, 1]}. Then, since
σ is independent of all other randomness, we can conclude the
same CLT unconditionally. We apply Berk’s CLT to the following
sums of Uni,

Tn = V (σ )−1n1/2
(
[X, X]avg − E [X, X]avg + [u, u]avg

− E [u, u]avg −
1
K
[u, u]{n} +

1
K
E [u, u]{n}

)
= n−1/2

n−1∑
i=1

V (σ )−1/2Uni,

Uni =
n
K

{
K∑
j=1

(
XtiK+j − Xt(i−1)K+j

)2
−

∫ tiK+j

t(i−1)K+j

σ 2u du

}

+
n
K

{
K∑
j=1

(
utiK+j − ut(i−1)K+j

)2
− E

(
utiK+j − ut(i−1)K+j

)2}

−
n
K

{
2K−1∑
s=1

1
2

(
u(i−1)K+1+s − u(i−1)K+s

)2
− E
1
2

(
u(i−1)K+1+s − u(i−1)K+s

)2 }
≡ Uxni + U

u1
ni + U

u2
ni ≡ U

x
ni + U

u
ni.

There are 4 conditions to be satisfied in Berk’s CLT, which
we denote (i)–(iv). Notice that {Uni}n−1i=1 is (conditionally on σ ) a
sequence of 1-dependent random variables. Therefore, condition
(iv) on dependence is trivially satisfied. Condition (iii) requires the
following to exist and be non-zero,

V (σ ) = lim
n→∞

n−1var

{
n−1∑
i=1

Uni

}
.

This follows by our moment calculations,

V (σ ) = lim
n→∞

nvar [X, X]avg + nvar [u, u]avg
+

(
n3/2

n

)2
var [u, u]{n} − 2

n2

n
cov

(
[u, u]{n}, [u, u]avg

)
=
4
3

∫
σ 4t dt +

2
c3

(
12δ4 + 4Eε4

∫
ω4 (u) du+ 24δ2

∫
ω2 (u) du

)
−
2
c3

(
8δ4 + 4

(
Eε4 − 1

) ∫
ω4 (u) du+ 16δ2

∫
ω2 (u) du

)
=
4
3

∫
σ 4t dt + c

−3
(
8δ4 + 16δ2

∫
ω2 (u) du+ 8

∫
ω4 (u) du

)
.

Condition (ii) requires

var (Uns+1 + · · · + Uns′) ≤
(
s′ − s

)
M ′

for all i, j, and n sufficiently large, (13)

whereM ′ is some constant. We have that

var
(
Uxns+1 + · · · + U

x
ns′
)

= var

(
n
1
K

K∑
j=1

s′∑
i=s+1

{(
XtiK+j − Xt(i−1)K+j

)2
−

∫ tiK+j

t(i−1)K+j

σ 2u du

})

≤ 2
(
s′ − s

) {
sup
u∈[0,1]

σ 2 (u)
}

var
(
Uuns+1 + · · · + U

u
ns′
)
=
n2

K 2

s′∑
i=s+1

{
4
K∑
j=1

var
(
uiK+ju(i−1)K+j

)
+

2K−1∑
j=1

var
(
u(i−1)K+1+ju(i−1)K+j

)}

+
n2

K 2

s′∑
i=s+1

{
1
4
var

(
u2iK−K+1

)
−
3
4
var

(
u2iK+K

)
+ var

(
u2iK+1

)}
+ o(1)
≤
(
s′ − s

)
Cu
{
6c−3 + c−4

}
+ o(1),

where the o(1) terms arise from the mean m(.) and are
asymptotically negligible, while c is the constant in the definition
of K and Cu is the maximum of the upper bound for (var (ui))2 and
the upper bound for var

(
u2i
)
. Their respective expressions are as

follows:

var (ui) ≤ δ2 +
{
sup
t∈[0,1]

ω(t)
}2

var
(
u2i
)
≤ 2δ4 + 4

{
sup
t∈[0,1]

m(t)
}2 {

sup
t∈[0,1]

ω(t)
}2

+ 4 sup
t∈[0,1]

m(t)
{
sup
t∈[0,1]

ω(t)
}3
E|ε |3

+

{
sup
t∈[0,1]

ω(t)
}4 (
Eε4 − 1

)
+ 4

{
sup
t∈[0,1]

m(t)
}2
δ2

+ 4
{
sup
t∈[0,1]

ω(t)
}2
δ2.

By the Cauchy–Schwarz inequality we obtain (13).
Finally, condition (i) is:

For some η > 0 andM <∞, E |Uni|2+η ≤ M for all i and n. (14)

Then for some constant C, E[|Uni|2+η] ≤ C(E[|Uxni|
2+η
] +

E[|Uu1ni |
2+η
] + E[|Uu2ni |

2+η
]). Different arguments are required for

the Uxni and U
u
ni terms — the summands in U

x
ni are highly dependent

but individually of small order while the summands in Uuni are
independent or of low order dependence but of individually larger
order. Define

wnij =
n
K

[
(XtiK+j − Xt(i−1)K+j )

2
−

∫ tiK+j

t(i−1)K+j

σ 2u du

]
.
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Then, since XtiK+j − Xt(i−1)K+j ∼ N(0,
∫ tiK+j
t(i−1)K+j

σ 2u du), where∫ tiK+j
t(i−1)K+j

σ 2u du = O(K/n), we have E[|wnij|
r
] ≤ Cr < ∞ for all

r, i, j. Note that XtiK+j −Xt(i−1)K+j and XtiK+j′ −Xt(i−1)K+j′ for j 6= j
′ are

highly dependent. We write

Uxni =
n
K

{
K∑
j=1

(
XtiK+j − Xt(i−1)K+j

)2
−

∫ tiK+j

t(i−1)K+j

σ 2u du

}

=
n
K
K
n

K∑
j=1

wnij.

Therefore, by Minkowski inequality

(
E[|Uxni|

2+η
]
)1/2+η

≤
nK
Kn

K∑
j=1

(
E
[
|wnij|

2+η])1/2+η
=
1
K

K∑
j=1

(
E
[
|wnij|

2+η])1/2+η <∞.
Similar arguments apply to the terms Uu1ni and U

u2
ni , where we

make use of the assumption that E[|εti |
4+η
] < ∞. We just show

the argument for Uu1ni . Recall that utiK+j − ut(i−1)K+j = vtiK+j −

vt(i−1)K+j + εtiK+j − εt(i−1)K+j , where vti = δ
√
n
(
Wti −Wti−1

)
and

εti = m (ti) + ω (ti) εti , so it suffices to show this result for the
two components. The arguments to dowith vti are straightforward
because all moments exist and the magnitude is just right.
Regarding the εtiK+j terms, let ξnj = (εtiK+j − εt(i−1)K+j )

2
− E(εtiK+j −

εt(i−1)K+j )
2, where ξnj are independent and mean zero random

variables across j = 1, . . . , K . First, notice that E[|εtiK+j |
4+2η
] <

∞, supu∈[0,1] |m(u)| < ∞, and supu∈[0,1] |ω(u)| < ∞ imply
that E[|εtiK+j |

4+2η
] < ∞. Then, E[|εtiK+j |

4+2η
] < ∞ implies that

E[|(εtiK+j − εt(i−1)K+j)
2
|
2+η
] < ∞ and hence E[|ξnj|2+η]. Then, by

the Marcinkiewicz–Zygmund inequality for independent random
variables and Hölder’s inequality for sums

E

[∣∣∣∣∣ K∑
j=1

ξnj

∣∣∣∣∣
p]
≤ CpE

∣∣∣∣∣ K∑
j=1

ξ 2nj

∣∣∣∣∣
p/2


≤ CpE

∣∣∣∣∣∣
(
K∑
j=1

∣∣ξnj∣∣p)2/p
∣∣∣∣∣∣
p/2

= Cp

(
K∑
j=1

E
∣∣ξnj∣∣p) <∞

for any p for which E
∣∣ξnj∣∣p <∞. It follows that

E[|Uεni|
2+η
] ≡ E

∣∣∣∣∣ nK
K∑
j=1

ξnj

∣∣∣∣∣
2+η
 ≤ ( n

K

)2+η
KC2+η <∞

for K = O(n2/3). This establishes condition (i).
To conclude, the conditions of Berk’s theorem are satisfied

conditional on σ and sowe have shown that Pr(Tn ≤ t|σ)→ Φ(t)
for all t , which implies that Pr(Tn ≤ t) → Φ(t), where Φ(t)
denotes the c.d.f. of a standard normal random variable. �

Appendix B. Tables and figures

See Tables 2–8 and Fig. 5.
Fig. 5. Volatility signature plot for IBM transactions data, year 2005. The scale on
the X axis is the frequency of interpolated calendar time observations, in minutes.
Y axis denotes average of daily RV using calendar time data at frequency specified
by the x axis.
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